КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Коррозия бетона и меры борьбы с нейКоррозией бетона называется понижение прочности, повреждение и разрушение бетона под влиянием окружающей среды. Большой вклад в изучение коррозии бетона и мер борьбы с ней внесли русские ученые А.А.Байков, В.М.Москвин, С.Н.Алексеев, В.В,Тимашев и др.. различают коррозию бетона трех видов. 3.1. Виды коррозии бетона 3.1. Коррозия бетона первого вида Этот вид коррозии сопровождается растворением составных частей цементного камня, в первую очередь, гидроксида кальция под действием проточной воды. Хотя растворимость Ca(OH)2 в воде невелика (1,7 г/л при 15°С), но под действием проточной воды из цементного камня может вымыться большое количество Ca(OH)2. в связи с этим цементный камень становится пористым, теряет связанность и часть прочности. Если бетон плотный и не имеет пустот и трещин, то коррозия его может протекать только с поверхности; если же бетон пористый и вода проходит сквозь него под напором, то процесс протекает очень интенсивно. Наиболее сильное растворяющее действие на гидроксид кальция оказывает чистая дистиллированная вода (на заводах) и мягкая природная (дождевая) вода. Однако растворению Ca(OH)2 препятствует защитный верхний слой из карбоната кальция, образующегося на поверхности твердеющего бетона по реакции: Ca(OH)2 + СО2 = Ca(OH)3 +Н2О (1). Эта реакция называется реакцией карбонизации. Растворимость карбоната кальция в чистой воде приблизительно в 100 раз меньше, чем гидроксида кальция. Поэтому верхний слой из карбоната кальция, хотя и очень тонкий – несколько микрометров, защищает цементный камень от вымывания Ca(OH)2 из бетона. Поэтому при строительстве морских сооружений из бетонных блоков последние обязательно выдерживают 2-3 месяца на берегу перед опусканием их в водоем. 3.2. Коррозия бетона второго вида Этот вид коррозии происходит в результате реакций обмена между кислотами или солями, растворенными в воде, и составними частями цементного камня. В результате такого взаимодействия образуются вещества, которые легко растворяются в воде и вымываются ею из бетона. Это также способствует понижению прочности и разрушению бетона, т.е. его коррозии. По вышеприведенной схеме протекает коррозия бетона при контакте его с природными водами, содержащими свободную углекислоту в количестве более 15-20 мг/л. Такая углекислота называется агрессивной по отношению к бетону, т.е. она разрушающе действует на бетон. Процесс коррозии бетона при действии агрессивной углекислоты начинается с растворения карбонатного слоя бетона: CaСO3 + СО2 ↔ Ca(НСO3)2 (2). Гидрокарбонат кальция Ca(НСO3)2 обладает значительной растворимостью в воде и вымывается из бетона. Лишенный защитного карбонатного слоя бетон быстро разрушается. Сточные воды могут содержать различные неорганические кислоты, разрушающе действующие на бетон, например: CaСO3 + 2HCl = CaCl2 + CО2↑ + Н2О (3), Ca(OН)2 + 2HCl = CaCl2 + 2 Н2О (4). Образующийся хлорид кальция CaCl2 легко растворим в воде и ею вымывается из бетона. Аналогично разрушают бетон и аммонийные соли, входящие в состав многих удобрений. Например, нитрат аммония, подвергаясь во влажной среде гидролизу по схеме NH4NO3 + H2O ↔ NH4OH + HNO3 (5) образует кислоту HNO3 . Азотная кислота также, как и соляная растворяет СаСО3 и взаимодействуя с Ca(OН)2 бетона, вымывает его. Особенно опасны для бетонов растворы солей магния т.к. он реагируют не только с карбонатом и гидроксидом кальция, но и с основной составляющей затвердевшего цемента в бетоне – двухкальциевым гидросиликатом 2СаО · SiO2 · nH2O. Вышеназванные процессы протекают по следущим реакциям: MgCl2 + H2O ↔ MgOHCl + HCl; (6) CaСO3 + 2HCl = CaCl2 + CО2↑ + Н2О (7) Ca(OН)2 + MgSO4 + 2Н2О = Mg(OН)2↓ + Ca SO4 · 2Н2О (8) 2CaO · SiO2 · nH2O + 2MgSO4 + yH2O = 2Mg(OH)2 + 2[Ca SO4 · 2Н2О]↓ + + SiO2 ·mH2O↓ (9) где n + y = m + 6. Образующийся в реакциях (8) и (9) гидроксид магния Mg(OH)2 хотя и труднорастворим, но связанностью не обладает, поэтому тоже вымывается из бетона водой. Все эти процессы способствуют понижению прочности и разрушению бетона. Соли магния содержатся в морской воде, поэтому она особенно агрессивна по отношению к бетону. 3.3. Коррозия бетона третьего вида Этот вид коррозии происходит при взаимодействии реагентов с компонентами затвердевающего бетона и сопровождается образованием веществ, кристаллизирующихся в порывах бетона с увеличением объема по сравнению с исходными компонентами бетона. Вследствие этого в бетоне возникают расклинивающие напряжения и происходит его растрескивание. Таким образом на бетон действуют серная кислота, сульфаты, гипсовые воды. При этом протекают следущие реакции: CaСO3 + Н2SO4 + Н2О = CaSO4 · 2Н2О + СO2↑ (10) 1) CaSO4 · 2Н2О – гипс при кристаллизации увеличивается в объеме по сравнению с исходным компонентом бетона (CaСO3) на 10%; 2) гипсовые воды,содержащие в растворе сульфат кальция, реагируют с трехкальциевым гидроаллюминатом, входящим в состав бетона, по схеме: 3СаО · Al2O3 · 6H2O + 3CaSO4 + 25H2O = 3CaO · Al2O3 · 3CaSO4 · 31H2O (11). Образующийся трехкальциевый гидросульфоалюминат при кристаллизации увеличивается в объеме по сравнению с компонентом бетона 3СаО · Al2O3 · 6H2O в 2,5 раза. Коррозия бетона 3 вида происходит особенно быстро, если бетон находится под нагрузкой. Разбавленные растворы щелочей не разрушают бетон, если они постоянно его омывают. Если же щелочные растворы попеременно контактируют с бетоном, то в этом случае происходит коррозия бетона третьего вида в последствие действия углекислоты воздуха на щелочь, остающуюся в порах влажного бетона. Например, при контакте цемента с раствором гидроксида натрия идет следущая реакция: 2NaOH + CO2↑ + 9H2O = Na2CO3 · 10H2O (12). Образующаяся сода Na2CO3 · 10H2O также кристаллизируется с увеличением объема в порах высыхающего бетона.
|