КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Струнная теория поля
Со времен новаторского труда Фарадея все физические теории записывались в виде полей. На теории поля основана максвелловская теория света, как и теория Эйнштейна. По сути дела, вся физика частиц опирается на теорию поля. Не основана на ней только теория струн. Программа КСВ представляла собой скорее список удобных правил, нежели теорию поля. Моей следующей задачей было исправить это положение. Однако проблемой струнной теории поля оставалось ее неприятие многими видными учеными. Их доводы выглядели просто. Такие титаны физики, как Хидеки Юкава и Вернер Гейзенберг, долгие годы разрабатывали теорию поля, не опирающуюся на точечные частицы. Они считали элементарные частицы скорее пульсирующими сгустками материи, чем точками. Но, несмотря на все их старания, теории поля, основанные на идее сгустков, неизменно противоречили принципу причинности. Если вызвать колебания сгустка в одной точке, взаимодействия распространятся быстрее скорости света, проникающего сквозь сгусток, что противоречит специальной теории относительности и создает всевозможные временные парадоксы. Таким образом, «нелокальные теории поля», основанные на идее сгустков, считались непосильной задачей. Многие физики утверждали, что лишь локальная теория поля, построеннная на концепции точечных частиц, может быть последовательной. А нелокальные теории поля неизбежно противоречат теории относительности. Второй довод выглядел еще убедительнее. Модель Венециано обладала множеством чудесных свойств (в том числе так называемой дуальностью), прежде никогда не виданных в теории поля. Несколькими годами ранее Ричард Фейнман изложил «правила», которым должна подчиняться любая теория поля. Однако правила Фейнмана представляли собой прямое нарушение принципа дуальности. В итоге многие специалисты по теории струн пришли к убеждению, что струнная теория поля невозможна по той причине, что она неизбежно нарушает свойства модели Венециано. Они утверждали, что теория струн занимает особое положение в физике, поскольку ее нельзя преобразовать в теорию поля. Над этой сложной, но важной задачей я работал вместе с Кейдзи Киккава. Шаг за шагом мы разрабатывали свою теорию поля, точно так же, как наши предшественники строили теории поля для других взаимодействий. По примеру Фарадея мы вводили поле в каждой точке пространства-времени. Но для струнной теории поля нам пришлось обобщать концепцию Фарадея и принять поле, определенное для всех возможных конфигураций струны, колеблющейся в пространстве-времени. На втором этапе требовалось составить уравнения поля, которым подчиняется струна. С уравнением поля для одной струны, перемещающейся в пространстве-времени, проблем не было. Как и следовало ожидать, наши уравнения поля дали бесконечный ряд струнных резонансов, каждый соответствовал некой субатомной частице. Затем мы обнаружили, что на возражения Юкавы и Гейзенберга можно было ответить с помощью струнной теории поля. Когда мы вызывали колебания струны, они распространялись по струне со скоростью меньшей, чем скорость света. Но скоро мы зашли в тупик. При попытке ввести взаимодействующие струны мы не могли корректно воспроизвести амплитуду Венециано. Дуальность и счет кривых, приведенный Фейнманом для любой теории поля, находились в состоянии прямого конфликта. Как и полагали критики, некорректными оказались диаграммы Фейнмана. Этот результат обескураживал. Все говорило о том, что теория поля, последний век служившая фундаментом для физики, принципиально несовместима с теорией струн. Помню, как я, разочарованный, до поздней ночи ломал голову над этой задачей. Несколько часов подряд я методично проверял возможные альтернативные решения. И неизменно приходил к выводу, что они противоречат дуальности. Тогда я вспомнил слова Шерлока Холмса, обращенные к Ватсону в повести Артура Конан Дойля «Знак четырех»: «Сколько раз я говорил вам: если отбросить невозможное, то, что останется, пусть даже самое невероятное , и будет истиной». Ободренный этой мыслью, я отбросил все невозможные альтернативы. Оставалось одно невероятное решение: игнорировать свойства формулы Венециано-Судзуки. Часа в три ночи меня вдруг осенило. Я понял, что физики упустили из виду очевидное решение: формулу Венециано-Судзуки можно разделить на две части. Тогда каждая часть соответствует одной из диаграмм Фейнмана, каждая часть опровергает дуальность, но итог соответствует свойствам теории поля. Я поспешно взял бумагу и погрузился в расчеты. Следующие пять часов я провел проверяя и перепроверяя вычисления по всем возможным направлениям. Вывод оказался однозначным: теория поля действительно опровергает дуальность, как и следовало ожидать, тем не менее она приемлема, так как в конечном итоге воспроизводит формулу Венециано-Судзуки. Задача была почти решена. Оставалась лишь одна диаграмма Фейнмана, соответствующая столкновению четырех струн. В том году я читал вводный курс электричества и магнетизма студентам Городского университета Нью-Йорка, и мы с ними изучали силовые линии Фарадея. Я предлагал студентам нарисовать силовые линии вокруг зарядов различной конфигурации, повторяя действия, которые первым проделал Фарадей в XIX в. Внезапно до меня дошло: волнистые линии, которые я просил нарисовать студентов, имеют ту же топологическую структуру, что и столкновение струн. Таким образом, рассматривая заряды в студенческой лаборатории, я нашел точную конфигурацию для столкновения четырех струн. Неужели все так просто? Я поспешил домой, чтобы проверить свою догадку, и убедился, что прав. Применяя метод наглядных изображений, доступный даже студенту-первокурснику, я мог продемонстрировать, что взаимодействие четырех струн скрывается в формуле Венециано. К зиме 1974 г. мы с Киккава, пользуясь методами, восходящими еще к временам Фарадея, закончили разработку струнной теории поля — первой удачной попытки сочетать теорию струн с математическим аппаратом теории поля. Наша теория поля была далека от совершенства, хотя точно воспроизводила всю информацию, относящуюся к теории струн. Поскольку мы строили теорию поля, двигаясь в обратном порядке, многие симметрии остались неопределенными. К примеру, симметрии специальной теории относительности присутствовали, но в неявном виде. Требовалось поработать, чтобы упростить найденные нами уравнения поля. Но, едва мы начали исследовать свойства нашей теории поля, в модели вдруг обнаружился серьезный изъян. В том году физик Клод Лавлейс из Университета Раджерса выяснил, что бозонная струна (описывающая целочисленные спины) самосогласована только в 26 измерениях. Другие ученые подтвердили этот результат и продемонстрировали, что суперструна (описывающая и целочисленные, и половинные спины) самосогласована только в десяти измерениях. Вскоре выяснилось, что в других количествах измерений, отличных от 10 и 26, теория полностью теряет все свои прекрасные математические свойства. Но никто не верил, что теория, определенная для 10 или 26 измерений, имеет хоть какое-нибудь отношение к действительности. Исследования теории струн внезапно замерли. Подобно теории Калуцы-Клейна, теория струн впала в глубокий анабиоз. На десять долгих лет эта модель оказалась прочно забытой. (Большинство ученых, и я в том числе, бросили эту модель, словно тонущий корабль, однако несколько упрямцев, таких как физики Джон Шварц и покойный Жоэль Шерк, пытались удержать ее на плаву и продолжали неуклонно совершенствовать. К примеру, первоначально струнная теория считалась применимой лишь к сильным взаимодействиям с режимами колебаний, соответствующими резонансу кварковой модели. Шварц и Шерк убедительно доказали, что струнная модель действительно является объединяющей теорией для всех взаимодействий, а не только для сильных.) Исследования в области квантовой гравитации двинулись в другом направлении. В 1974–1984 гг., пока теория струн пребывала в забвении, исследование ряда альтернативных теорий квантовой гравитации с успехом продолжалось. В этот период исходная теория Калуцы-Клейна, а затем и теория супергравитации пользовались огромной популярностью, но со временем изъяны данных моделей тоже стали очевидными. К примеру, было доказано, что и теория Калуцы-Клейна, и теория супергравитации неперенормируемы. А затем в том же десятилетии произошло нечто странное. С одной стороны, физиков начал раздражать растущий список моделей, опробованных и отвергнутых за этот период. Одну за другой их признавали неудачными. Постепенно становилось ясно, что теории Калуцы-Клейна и супергравитации в принципе указывают верный путь, но сами по себе недостаточно совершенны, чтобы разрешить проблему неперенормируемости. И единственной теорией, достаточно сложной, чтобы охватить и теорию Калуцы-Клейна, и теорию супергравитации, оставалась теория суперструн. С другой стороны, физики постепенно привыкали работать с гиперпространством. Благодаря возрождению теории Калуцы-Клейна идея гиперпространства теперь уже не казалась надуманной или запретной. Со временем даже теория, определенная в 26 измерениях, перестала выглядеть чем-то из ряда вон выходящим. Изначальное сопротивление этим 26 измерениям со временем сошло на нет. И наконец, когда в 1984 г. Грин и Шварц доказали, что теория суперструн — единственная самосогласованная теория квантовой гравитации, начался бум. В 1985 г. Эдвард Виттен добился значительного прогресса в струнной теории поля, которую многие считают одним из прекраснейших достижений теоретической физики. Он доказал, что наша давняя теория поля может быть выведена с применением эффективных математических и геометрических теорем (заимствованных из так называемой теории гомологии ) в полностью релятивистской форме. Благодаря новой теории Виттена открылась истинная математическая элегантность струнной теории поля, которой не было видно за нашими формулами. Сразу же появились сотни научных статей, в которых рассматривались поразительные математические свойства теории поля Виттена[83].
|