КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
КВАНТОВАЯ ГРАВИТАЦИЯ
Успех научных теорий, особенно теории тяготения Ньютона, привел французского ученого Пьера Симона Лапласа в начале девятнадцатого столетия к убеждению, что Вселенная полностью детерминирована. Иначе говоря, Лаплас полагал, что должен существовать ряд законов природы, которые позволяют — по крайней мере, в принципе — предсказать все, что случится во Вселенной. Для этого требуется «всего лишь» подставить в такие законы полную информацию о состоянии Вселенной в некоторый произвольно выбранный момент времени. Это называется заданием «начального состояния» или «граничных условий». (В случае граничных условий речь идет о границе в пространстве или времени; граничное состояние в пространстве есть состояние Вселенной у внешних ее границ — если таковые имеются.) Лаплас считал, что, располагая полным набором законов и зная начальные или граничные условия, мы сможем в точности определить состояние Вселенной в любой заданный момент времени. Необходимость знать начальные условия, по‑видимому, интуитивно очевидна: различные текущие состояния, без сомнения, приведут к различным состояниям в будущем. Необходимость знания граничных условий в пространстве чуть труднее для понимания, но в принципе это то же самое. Уравнения, лежащие в основе физических теорий, могут давать весьма разнообразные решения, выбор между которыми основывается на начальных или граничных условиях. Здесь прослеживается отдаленная аналогия с состоянием банковского счета, на который поступают и с которого списываются большие суммы. Закончите вы банкротом или богачом, зависит не только от перечисляемых сумм, но и от начального состояния счета. Если Лаплас прав, тогда физические законы позволят нам по известному сегодняшнему состоянию Вселенной определить ее состояния в прошлом и будущем. Например, зная положения и скорости Солнца и планет, мы можем при помощи законов Ньютона вычислить состояние Солнечной системы в любой момент прошлого или будущего[11]. В случае планет детерминизм кажется совершенно очевидным — в конце концов, астрономы с очень высокой точностью предсказывают такие события, как затмения. Но Лаплас пошел дальше, предположив, что подобные законы управляют и всем остальным, включая человеческое поведение. Но действительно ли ученые способны предвычислить все наши будущие действия? Число молекул в стакане воды превышает десять в двадцать четвертой степени (единица с двадцатью четырьмя нуля). На практике мы не имеем ни малейшей надежды узнать состояние каждой из них; еще меньше у нас шансов узнать точное состояние Вселенной или даже своего собственного тела. Так что, говоря о детерминированности Вселенной, мы подразумеваем, что, даже если наших интеллектуальных способностей недостаточно для этих вычислений, наше будущее тем не менее предопределено. Эта доктрина научного детерминизма решительно отвергалась многими из тех, кто чувствовал, что она нарушает свободу Бога править миром по своей воле. Тем не менее детерминизм оставался в науке общепринятым предположением до начала двадцатого столетия. Одним из первых указаний на то, что от этого принципа придется отказаться, пришло от английских физиков Джона Уильяма Рэлея и Джеймса Джинса, вычисливших количество чернотельного излучения, которое должно испускать всякое нагретое тело, например звезда (в гл. 7 уже упоминалось, что любой материальный объект, будучи нагрет, испускает чернотельное излучение). Согласно представлениям того времени горячее тело должно было испускать электромагнитные волны одинаково на всех частотах. Будь это так, равные энергии приходились бы на каждый цвет видимого спектра излучения, на каждую частоту микроволнового излучения, радиоволн, рентгеновских лучей и т. д. Напомним, что частотой волны называют число ее колебаний в секунду, то есть число «волн в секунду». Математически утверждение, что горячее тело одинаково испускает волны на всех частотах, означает, что оно излучает одно и то же количество энергии во всех диапазонах частот: от нуля до одного миллиона волн в секунду, от одного до двух миллионов, от двух до трех миллионов и так далее до бесконечности. Иначе говоря, некая единица энергии излучается с волнами, чья частота лежит в диапазоне от нуля до миллиона в секунду и во всех последующих интервалах. Тогда полная энергия, излучаемая на всех частотах, составит один плюс один плюс один… и так до бесконечности. И поскольку нет ограничений на возможное число волн в секунду, это суммирование энергий никогда не закончится. Получается, что полная излучаемая энергия должна быть бесконечной. Чтобы уйти от этого явно абсурдного вывода, немецкий ученый Макс Планк в 1900 г . предположил, что видимый свет, рентгеновские лучи и другие электромагнитные волны могут испускаться только некоторыми дискретными порциями, которые он назвал «квантами». Сегодня мы называем квант света фотоном. Чем выше частота света, тем больше энергия его фотонов. Поэтому, хотя фотоны любого данного цвета или частоты полностью идентичны, фотоны различных частот согласно Планку несут разное количество энергии. Это означает, что в квантовой теории «самый слабый» свет любого данного цвета — свет, представленный одним‑единственным фотоном, — несет энергию, величина которой зависит от цвета (рис. 23). Например, частоты фиолетового света вдвое выше частот красного, и, следовательно, один квант фиолетового света несет вдвое больше энергии, чем один квант красного. Таким образом, самая маленькая порция фиолетовой световой энергии вдвое больше самой маленькой порции красной.
Рис. 23. «Самый слабый» свет.
Чем меньше фотонов, тем «слабее» свет. «Самый слабый» свет любого цвета — это свет, представленный одним фотоном. Как это решает проблему абсолютно черного тела? Минимальное количество электромагнитной энергии, которую абсолютно черное тело может испустить на любой заданной частоте, равно энергии одного фотона этой частоты. На более высоких частотах энергия фотонов выше. То есть на высоких частотах самое маленькое количество энергии, которое может испустить абсолютно черное тело, оказывается больше. Для достаточно высокой частоты энергия одного кванта превышает всю энергию тела. На такой частоте свет не испускается, что кладет предел сумме, которая прежде считалась бесконечной. Таким образом, по теории Планка интенсивность излучения на высоких частотах должна снижаться. В результате уровень энергетических потерь тела становится конечной величиной, что и решает проблему абсолютно черного тела. Квантовая гипотеза очень хорошо объяснила наблюдаемую интенсивность излучения горячих тел, но ее последствия для детерминизма не осознавались до 1926 г ., когда другой немецкий ученый, Вернер Гейзенберг, сформулировал знаменитый принцип неопределенности. Принцип неопределенности говорит нам, что вопреки убеждениям Лапласа природа ограничивает нашу способность предсказывать будущее на основе физических законов. Дело в том, что для предсказания будущего положения и скорости частицы мы должны иметь возможность измерить ее начальное состояние, то есть ее текущие положение и скорость, причем измерить точно. Для этого, по всей видимости, следует подвергнуть частицу воздействию света. Некоторые из световых волн будут рассеяны частицей и укажут обнаружившему их наблюдателю положение частицы. Однако использование световых волн данной длины накладывает ограничения на точность, с которой определяется положение частицы: точность эта лимитируется расстоянием между гребнями волны. Таким образом, желая как можно точнее измерить положение частицы, вы должны использовать световые волны короткой длины, а значит, высокой частоты. Однако в соответствии с квантовой гипотезой Планка нельзя оперировать произвольно малым количеством света: вам придется задействовать по меньшей мере один квант, энергия которого с увеличением частоты становится больше. Итак, чем точнее вы стремитесь измерить положение частицы, тем выше должна быть энергия кванта света, который вы в нее направляете. Согласно квантовой теории даже один квант света нарушит движение частицы, непредсказуемым образом изменив ее скорость. И чем выше энергия кванта света, тем больше вероятные возмущения. Стараясь повысить точность измерения положения, вы воспользуетесь квантом более высокой энергии, и скорость частицы претерпит значительные изменения. Чем точнее вы пытаетесь измерить положение частицы, тем менее точно вы можете измерить ее скорость, и наоборот. Гейзенберг показал, что неопределенность положения частицы, помноженная на неопределенность ее скорости и на массу частицы, не может быть меньше некоторой постоянной величины. Значит, уменьшив, например, вдвое неопределенность положения частицы, вы должны удвоить неопределенность ее скорости, и наоборот. Природа навсегда ограничила нас условиями этой сделки. Насколько плохи данные условия? Это зависит от упомянутой «некоторой постоянной величины». Ее называют постоянной Планка, и она ничтожна мала. Ввиду малости постоянной Планка последствия описанной сделки и квантовой теории в целом, подобно эффектам теории относительности, незаметны в повседневной жизни. (Хотя квантовая теория и влияет на нашу жизнь, будучи основой, в частности, современной электроники.) Например, определив скорость теннисного шарика массой один грамм с точностью до одного сантиметра в секунду, мы можем установить его положение с точностью, намного превосходящей любые практические потребности. Но если измерить положение электрона с точностью примерно до размеров атома, то невозможно определить его скорость с погрешностью меньше, чем плюс‑минус 1000 километров в секунду, что никак не назовешь точным измерением. Предел, установленный принципом неопределенности, не зависит ни от способа, которым измеряются положение или скорость, ни от типа частицы. Принцип неопределенности Гейзенберга отражает фундаментальное, не допускающее исключений свойство природы, приводящее к глубоким изменениям в наших взглядах на устройство мира. Даже по прошествии семидесяти с лишним лет многие философы не до конца понимают эти изменения, которые все еще остаются предметом значительных разногласий. Принцип неопределенности ознаменовал конец лапласовской мечты о научной теории, модели Вселенной, которая будет полностью детерминистической: невозможно точно предсказать будущие события, если невозможно точно определить даже современное состояние Вселенной! Мы пока еще можем допустить, что существует некий набор законов, полностью предопределяющий события для некоторого сверхъестественного существа, которое, в отличие от нас, способно наблюдать существующее состояние Вселенной, не нарушая его. Однако такие модели Вселенной не представляют большого интереса для нас, обычных смертных. Представляется разумным использовать так называемый принцип бритвы Оккама и отсечь все элементы теории, которые не имеют наблюдаемых проявлений. Этот подход в 1920‑х гг. привел Гейзенберга, Эрвина Шрёдингера и Поля Дирака к замене ньютоновской механики новой теорией — квантовой механикой, основанной на принципе неопределенности. В этой теории частицы не обладают по отдельности точно определенными положениями и скоростями. Вместо этого они обладают квантовыми состояниями, комбинациями положений и скоростей, которые известны лишь в границах, допускаемых принципом неопределенности. Одна из революционных особенностей квантовой механики состоит в том, что эта теория не предсказывает единственного определенного результата наблюдения. Она предлагает множество возможных результатов и говорит, насколько вероятен каждый из них. Иными словами, если проделать одинаковые измерения с большим числом однотипных систем, находящихся в одинаковом исходном состоянии, то в некотором числе случаев измерения дадут результат А, еще в каком‑то числе случаев — результат В, и так далее. Можно приблизительно предсказать, сколько раз выпадет результат А или В, но нельзя предсказать определенный результат одного конкретного измерения. Вообразите, например, что метаете дротики, играя в дартс. Согласно классическим (старым, не квантовым) теориям, дротик либо попадет в яблочко, либо нет. Зная скорость дротика в момент броска, силу тяжести и т. п., вы можете вычислить, попадет ли он в мишень. Однако квантовая теория говорит, что это не так: невозможно сделать такое предсказание наверняка. В соответствии с квантовой теории есть некоторая вероятность того, что дротик угодит в яблочко, и отличная от нуля вероятность, что он вонзится в любой другой участок доски. Имея дело с такими крупными объектами, как в игре в дартс, вы можете быть уверены в прогнозе, если классическая теория — в данном случае механика Ньютона — предсказывает попадание дротика в мишень. По крайней мере, шансы, что этого не случится (согласно квантовой теории), настолько малы, что, продолжая метать дротики тем же манером до конца жизни Вселенной, вы, вероятно, никогда не промазали бы. Но в масштабах атомов все обстоит по‑другому. Вероятность поражения центра мишени дротиком, состоящим из одного атома, равнялась бы 90%, шанс, что он вонзится в другой участок доски, составил бы 5%, и еще 5% пришлось бы на попадание мимо доски. Вы не можете сказать заранее, что именно произойдет. Все, что вы можете, — это утверждать, что при многократном повторении эксперимента в среднем 90 раз из 100 дротик угодит в яблочко. Квантовая механика внесла неизбежный элемент непредсказуемости или случайности в науку. Эйнштейн настойчиво возражал против этого, несмотря на важную роль, которую он сам сыграл в развитии отрицаемых им идей. В действительности Эйнштейн получил Нобелевскую премию именно за вклад в создание квантовой теории. Однако он никогда не принял того, что Вселенной управляет случай; его чувства образно выражены в знаменитой фразе: «Бог не играет в кости». Качество научной теории, как мы уже говорили, определяется ее способностью предсказывать результаты эксперимента. Квантовая теория ограничивает эту нашу способность. Не ограничивает ли квантовая теория возможности науки? Когда наука развивается, то пути ее движения должны диктоваться самой природой. В данном случае природа требует, чтобы мы пересмотрели то, что подразумеваем под предсказанием: мы не способны точно предсказать результат эксперимента, но можем многократно повторить эксперимент и подтвердить, что различные его исходы отмечаются с вероятностями, предсказанными квантовой теорией. Таким образом, принцип неопределенности не заставляет отказываться от веры в то, что миром управляют физические законы. На деле большинство ученых в конце концов приняли квантовую механику именно потому, что она великолепно согласуется с экспериментом. Одно из наиболее важных следствий принципа неопределенности Гейзенберга заключается в том, что в некоторых отношениях частицы ведут себя подобно волнам. Как вы уже знаете, они не имеют определенного положения, но «размазаны» по пространству в соответствии с некоторым распределением вероятностей (рис. 24). Точно так же, хотя свет представляет собой волны, в некоторых отношениях он ведет себя так, будто состоит из частиц: свет может испускаться или поглощаться только определенными порциями, квантами. Фактически квантовая механика основана на совершенно новом математическом аппарате, который не описывает реальный мир ни в терминах частиц, ни в терминах волн. Для некоторых целей удобно рассматривать частицы как волны, для других — воспринимать волны как частицы, но подобный подход не более чем условность, принятая для нашего удобства. Это то, что физики называют корпускулярно‑волновым дуализмом квантовой механики.
Рис. 24. «Размазанное» квантовое положение.
Согласно квантовой теории невозможно ни определить с произвольно высокой точностью положение и скорость тела, ни точно предсказать ход будущих событий. Важное следствие волнового квантово‑механического поведения — возможность наблюдать интерференцию между двумя наборами частиц. Об интерференции принято думать как о явлении волновой природы. При столкновении волн гребни одного их набора могут совпасть со впадинами другого набора (в этом случае говорят, что волны находятся «в противофазе»). Когда такое случается, два набора волн подавляют друг друга, а не образуют более сильную волну, как можно было бы ожидать (рис. 25). Самый знакомый всем пример интерференции света — радужная окраска мыльных пузырей. Она вызвана отражением света от внешней и внутренней поверхностей тонкой водяной стенки пузыря. Белый свет состоит из световых волн различной длины, а значит, разного цвета. Гребни волн определенной длины, отраженные от одной стороны водяной стенки, совпадают со впадинами волн, отраженных от другой стороны. Цвета, соответствующие этим длинам волн, отсутствуют в отраженном свете, который поэтому кажется окрашенным. Но квантовая теория говорит, что благодаря корпускулярно‑волновому дуализму интерференция может наблюдаться и у частиц.
Рис. 25. Волны, находящиеся в противофазе и совпадающие по фазе.
Если гребни и впадины двух волн совпадают, они образуют более сильную волну, но, если гребни одной волны совпадают со впадинами другой, они подавляют друг друга. Самый известный пример — так называемый эксперимент с двумя щелями. Представьте себе перегородку (тонкую стенку), в которой имеется две узкие параллельные прорези. Прежде чем рассматривать, что случается при прохождении частиц через эти прорези, исследуем, что произойдет, когда на них падает свет. По одну сторону от преграды разместим световой источник строго определенного цвета (то есть с фиксированной длиной волны). Б о льшая часть испущенного света попадет на перегородку, но некоторое количество пройдет через щели. Теперь допустим, что по другую сторону загородки установлен экран. Рассмотрим любую точку на этом экране. Ее достигнут волны, проникшие через обе прорези. Однако в общем случае свет, прошедший через одну щель, на пути от источника к нашей точке покроет иное расстояние, нежели свет, прошедший через другую щель. Из‑за этого различия расстояний волны, пришедшие к точке от двух разных щелей, не совпадут по фазе (рис. 26). В некоторых местах впадины одной волны совпадут с гребнями другой и эти волны погасят друг друга; в других гребни совпадут с гребнями, а впадины — со впадинами и волны взаимно усилятся; но в большинстве точек будет наблюдаться некое промежуточное состояние. Результат — характерное чередование светлых и темных полос.
Рис. 26. Пути световых волн и интерференция.
В эксперименте с двумя щелями расстояние, которое покроет свет, прошедший через верхнюю и нижнюю щели, различно для разных точек экрана. В итоге волны взаимно усиливаются на одних участках и гасят друг друга на других, формируя интерференционную картину из темных и светлых полос. Замечательный факт состоит в том, что та же самая картина отмечается, если источник света заменить источником, испускающим частицы, например электроны, обладающие одинаковой скоростью (а значит, соответствующие волны материи имеют одинаковую длину). Предположим, что вы бомбардируете электронами стенку с одной щелью. Большинство электронов будет остановлено стеной, но некоторые пройдут сквозь щель и доберутся до экрана, расположенного с другой стороны. Поэтому напрашивается вывод, что открытие в перегородке второй щели лишь увеличит число электронов, попадающих в каждую точку экрана. Однако когда вы открываете вторую щель, то число электронов, попадающих на экран, в некоторых точках увеличивается, а в других — уменьшается, как будто электроны испытывают интерференцию, подобно волнам, а не ведут себя как частицы (рис. 27).
Рис. 27. Распределение электронов.
Вследствие интерференции одновременная бомбардировка электронами двух щелей дает иной результат, нежели бомбардировка каждой из них в отдельности. Теперь представим себе, что мы посылаем электроны сквозь щель по одному за раз. Сохранится ли в этом случае интерференция? Можно было бы ожидать, что каждый электрон будет проходить через одну из двух щелей и в результате интерференционный узор исчезнет. В действительности, однако, даже при бомбардировке щелей одиночными электронами интерференция по‑прежнему наблюдается. Значит, каждый электрон должен одновременно проходить через обе щели и интерферировать сам с собой! Явление интерференции частиц имело принципиальное значение для понимания строения атомов, основных элементов, из которых состоим мы сами и все вокруг нас. В начале двадцатого столетия считалось, что, подобно тому как планеты обращаются вокруг Солнца, и электроны (отрицательно заряженные частицы) в атомах обращаются вокруг ядра, несущего положительный заряд. Предполагалось, что притяжение между положительным и отрицательным электрическими зарядами удерживает электроны на орбитах, подобно тому как притяжение Солнца не дает планетам сойти с их орбит. Одна беда: классические законы механики и электричества — до квантовой механики — предсказывали, что электроны, обращающиеся подобным образом, должны испускать излучение. Будь это так, они неизбежно теряли бы энергию и двигались по спирали к ядру до столкновения с ним. Следовательно, атомы — и вообще вся материя — должны были бы стремительно сколлапсировать в состояние с чрезвычайно высокой плотностью, чего явно не происходит! Датский ученый Нильс Бор частично разрешил эту проблему в 1913 г . Он предположил, что электроны, возможно, способны обращаться не на любом расстоянии от ядра, но только на некоторых специфических расстояниях. Если также допустить, что только один или два электрона могут обращаться вокруг ядра на каждом из этих фиксированных расстояний, то проблема коллапса решается, потому что после заполнения ограниченного числа внутренних орбит движение электронов по спирали к ядру прекращается. Данная модель убедительно объяснила структуру самого простого атома — атома водорода, в котором вокруг ядра обращается один‑единственный электрон. Но оставалось неясным, как распространить эту модель на более сложные атомы. Кроме того, идея относительно ограниченного набора разрешенных орбит выглядела искусственным временным приемом. Эта уловка работала математически, но она не объясняла, почему физические процессы протекают так, а не иначе, и какой фундаментальный закон — если таковой существует — за этим стоит. Новая теория — квантовая механика — позволила преодолеть эти затруднения. Она показала, что электрон, обращающийся вокруг ядра, можно рассматривать как волну, длина которой зависит от скорости ее распространения. Представьте себе волну, обегающую ядро на определенном расстоянии, как постулировал Бор. Длина окружности некоторых орбит будет соответствовать целому (не дробному) числу длин волны электрона. На таких орбитах гребни волн при каждом витке окажутся в одних и тех же положениях, так что волны будут складываться друг с другом. Эти орбиты соответствуют разрешенным орбитам Бора. В то же время на орбитах, где не укладывается целое число длин волн, гребни будут накладываться на впадины, приводя к затуханию волн. Это запрещенные орбиты. Таким образом, закон Бора о разрешенных и запрещенных орбитах получил объяснение (рис. 28).
Рис. 28. Волны на атомных орбитах.
Нильс Бор полагал, что в атоме электронные волны бесконечно обегают ядро. Согласно его модели только те орбиты, длина окружности которых соответствует целому числу длин волн электрона, не испытывают разрушительной интерференции. Удачным примером наглядного представления корпускулярно‑волнового дуализма являются так называемые интегралы по траекториям, предложенные американским ученым Ричардом Фейнманом. Этот подход, в отличие от классического, неквантового, не предполагает, что у частицы имеется некая единственная история или, иными словами, траектория в пространстве‑времени. Вместо этого считается, что частица движется из точки А в точку В по всем возможным траекториям (рис. 29). С каждой траекторией между А и В Фейнман связал пару чисел. Одно из них представляет амплитуду, или размах, волны. Другое — фазу, то есть положение в цикле колебания (гребень или впадина). Вероятность того, что частица попадет из А в В, определяется сложением волн для всех траекторий, соединяющих А и В. Как правило, если сравнить набор соседних траекторий, то фазы, то есть положения в цикле колебаний, будут очень сильно различаться. Значит, волны, следующие данными траекториями, почти в точности погасят друг друга. Однако у некоторых наборов соседних траекторий различие фаз не столь значительно. Волны, распространяющиеся по таким траекториям, не будут гаситься. Подобные траектории соответствуют разрешенным орбитам Бора.
Рис. 29. Множество траекторий электрона в эксперименте с двумя щелями.
Согласно квантовой теории в формулировке Ричарда Фейнмана частица, подобная этой, летящей от источника к экрану, движется по всем возможным траекториям сразу. Воплощение изложенных идей в конкретной математической форме позволило относительно легко вычислять разрешенные орбиты в сложных атомах и даже в молекулах, которые состоят из множества атомов, связанных электронами, чьи орбиты охватывают сразу несколько ядер. И поскольку строение молекул и их взаимодействие составляют основу химии и биологии, квантовая механика позволяет нам в принципе предсказывать почти все, что мы видим вокруг, в пределах ограничений, установленных принципом неопределенности. (На практике, однако, мы не можем решить уравнения ни для какого атома, кроме самого простого, атома водорода, в котором только один электрон, и пользуемся приближениями и компьютерами для анализа более сложных атомов и молекул.) Квантовая теория оказалась невероятно успешной и легла в основу почти всей современной науки и техники. Она управляет поведением транзисторов и интегральных схем — важнейших компонентов электронных устройств, таких как телевизоры и компьютеры, и составляет фундамент современной химии и биологии. Единственная область физической науки, в которую квантовая механика пока еще не проникла, — это гравитация и крупномасштабная структура Вселенной. Общая теория относительности Эйнштейна не принимает во внимание квантовомеханический принцип неопределенности, что необходимо для согласования с другими теориями. Как уже было показано в предыдущей главе, общая теория относительности требует видоизменения. Предсказав существование точек с бесконечной плотностью — сингулярностей, — классическая (то есть не квантовая) общая теория относительности тем самым предрекла собственное крушение, подобно тому как классическая механика предопределила свой крах, предсказав, что абсолютно черные тела должны излучать бесконечную энергию, а атомы — коллапсировать, достигая бесконечной плотности. И, как и в случае с классической механикой, мы надеемся устранить эти неприемлемые сингулярности, превратив классическую общую теорию относительности в квантовую теорию, то есть создав квантовую теорию гравитации. Если общая теория относительности неверна, почему же все эксперименты до настоящего времени подтверждают ее? Причина того, что мы до сих пор не заметили никаких расхождений между теорией и наблюдениями, состоит в том, что все гравитационные поля, с которыми нам обычно приходится сталкиваться, очень слабые. Но, как мы уже говорили, в зарождающейся Вселенной, где все вещество и энергия сосредоточены в ничтожно малом объеме, гравитационное поле должно быть очень сильным. В присутствии столь сильных полей эффекты квантовой теории должны быть весьма существенны. Хотя квантовая теория гравитации еще не создана, мы знаем множество свойств, которыми, как нам думается, она должна обладать. Во‑первых, она должна включать в себя фейнмановскую схему, представляющую квантовую теорию в терминах интегралов по траекториям. Во‑вторых, частью любой окончательной теории, по нашему убеждению, должна быть идея Эйнштейна о представлении гравитационного поля как искривления пространства‑времени: в искривленном пространстве частицы стремятся следовать по пути, наиболее приближенному к прямой линии, но поскольку пространство‑время не является плоским, их траектории выглядят изогнутыми, как если бы на них действовало гравитационное поле. Когда мы применяем фейнмановские интегралы по траекториям к взглядам Эйнштейна на гравитацию, аналогом траектории частицы становится полностью все искривленное пространство‑время, представляющее историю всей Вселенной. Классическая теория гравитации предусматривает только два возможных сценария поведения Вселенной: либо она существовала всегда, на протяжении бесконечного времени, либо ведет свое начало от сингулярности, которая имела место в прошлом, некоторое конечное время назад. По причинам, обсуждавшимся выше, мы полагаем, что Вселенная не существовала всегда. Но если она имела начало, то согласно классической общей теории относительности, чтобы узнать, какое именно решение уравнений Эйнштейна описывает нашу Вселенную, нам нужно знать ее начальное состояние, то есть точное состояние, с которого началось ее развитие. Быть может, Бог и установил изначально законы природы, но, кажется, с тех пор Он предоставил Вселенной развиться в согласии с ними без Его вмешательства. Как Он выбирал начальное состояние или конфигурацию Вселенной? Каковы были «граничные условия» в начале времен? Этот вопрос вызывает затруднения в классической общей теории относительности, потому что она неприменима к моменту зарождения Вселенной. С другой стороны, квантовая теория гравитации открывает новые возможности для разрешения указанной проблемы. В квантовой теории пространство‑время может быть конечным по протяженности и в то же время не иметь сингулярностей, формирующих границу или край. Такое пространство‑время походило бы на поверхность Земли, только с двумя дополнительными измерениями. Как уже отмечалось, путешествуя в некотором направлении по поверхности Земли, никогда не встречаешь непреодолимого барьера или края и в конечном счете возвращаешься туда, где начал путь, не рискуя сверзиться с края света или пропасть в сингулярности. Так что, если бы нам посчастливилось создать квантовую теорию гравитации, она позволила бы нам избавиться от сингулярностей, где перестают работать законы природы. Коль скоро пространство‑время не имеет никаких границ, то ни к чему выяснять, как оно ведет себя на границе, — нет нужды знать начальное состояние Вселенной. Не существует края пространства‑времени, вынуждающего нас обращаться к идее Бога или искать некоторый новый закон, чтобы установить граничное состояние пространства‑времени. Это можно выразить так: граничное состояние Вселенной состоит в том, что она не имеет никаких границ. Такая Вселенная будет полностью обособленной, не взаимодействующей ни с чем вне себя. Ее нельзя ни создать, ни разрушить. Она просто есть. Пока мы полагали, что Вселенная имеет начало, роль Создателя казалась ясной. Но если Вселенная действительно полностью автономна, не имеет ни границ, ни краев, ни начала, ни конца, то ответ на вопрос о роли Создателя перестает быть очевидным.
|