![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Быстродействие логических элементовБыстродействие является важнейшим показателем цифровых устройств, определяющим скорость обработки информации. Быстродействие логических элементов характеризуется средним временем задержки сигнала tср, смысл которого поясняется на рис. 3.5 для случая инвертора.
а б Рис. 3.5. Обозначение сигналов инвертора (а);
Быстродействие логических элементов зависит как от физических процессов переключения электронных компонентов, входящих в состав элемента, так и от скорости перезарядки паразитных внешних емкостей. На рис. 3.6 показан переход инвертора из состояния низкого уровня, когда напряжение на паразитной емкости нагрузки близко к нулю, в состояние высокого уровня, которое заканчивается не после запирания усилительного элемента (размыкание ключа), а после заряда емкости до напряжения высокого уровня. Очевидно, что имеет место и обратный процесс, когда после замыкания ключа низкий уровень устанавливается лишь после разряда емкости. Естественно, что процессы переключения электронных элементов из одного состояния в другое сопровождаются потреблением мощности от источника питания Рп.
а б в Рис. 3.6. Исходное состояние инвертора (а);
Ясно, что чем больше затрачивается мощность, тем быстрее может происходить переход элемента из одного состояния в другое. Технологически же приемы, обеспечивающие снижение времени переноса зарядов в объеме полупроводника и уменьшение паразитных емкостей, позволяют уменьшить время задержки переключения и без потребления значительной мощности. Поэтому показателем технологического совершенства логического элемента может служить энергия переключения Эп, рассчитываемая по формуле Рассмотрим логические элементы распространенных серий с точки зрения скорости переключения и потребляемой мощности. Классическим представителем ТТЛ-технологии является логический элемент И-НЕ, в котором по технологическим соображениям роль диодов, реализующих операцию И, выполняет многоэмиттерный транзистор VT1 (рис. 3.7).
Таблица 3.1
Существенно повысить быстродействие без наращивания мощности удалось введением в схему ТТЛ элементов с переходами Шоттки (диоды Шоттки, транзисторы Шоттки), в которых отсутствует эффект перезаряда диффузионной емкости, приводившей обычно в диодах Таблица 3.2
Совершенствование технологии и оптимизация решений ТТЛШ элементов привели к дальнейшему улучшению показателей (табл. 3.2, серии К1531, К1533). Другим направлением повышения быстродействия является применение обычных транзисторов, технология которых проще, чем технология элементов Шоттки, но работающих в ненасыщенном режиме и с управлением не током базы, а током эмиттера. Из теории биполярных транзисторов известно, что ток коллектора (в преобразовании Лапласа) можно представить или в функции тока базы
или тока эмиттера
Из известных соотношений для коэффициентов передачи тока эмиттера a и тока базы b следует, что постоянная времени переходного процесса при управлении током эмиттера ta в (1 + b) раз меньше, чем при управлении током базы. Учитывая, что у современных транзисторов значение b составляет несколько десятков единиц, понятен эффект перехода на управление током эмиттера. Исключение же режима насыщения и связанной с ним задержкой выключения делает такой вариант построения логического элемента достаточно эффективным. Рассмотренные выше идеи реализованы в логических элементах типа ЭСЛ (эмиттерно-связанной логики), основой которых является токовый переключатель (рис. 3.8). Рис. 3.8. Схема токового переключателя
Если входной сигнал Х имеет низкий уровень (меньше опорного напряжения U0), то VT1 заперт, VT2 – открыт и замыкает на себя весь ток генератора эмиттерного тока I0. На основном выходе при этом формируется сигнал низкого уровня, значение которого Особую ветвь в схемотехнике цифровых устройств занимают логические элементы, построенные на технологии МДП (МОП) структур, которые обладают целым рядом достоинств: oтсутствием эффекта насыщения в открытом состоянии, что, во-первых, исключает процессы задержки выключения, а во-вторых, позволяет обеспечить режим переключения в широком диапазоне питающих напряжений; oтсутствием входного тока; удобством управления потенциалом затвора; технологическая возможность выполнения на одном кристалле транзисторов с разным типом канала (комплементарные транзисторы) позволила создать логические элементы, не потребляющие энергию от источника питания в статическом состоянии. И хотя время задержки переключения, определяемое перезарядом паразитных емкостей через достаточно большие сопротивления открытых слаботочных транзисторов, может быть существенно выше, чем у ТТЛШ и ЭСЛ элементов, КМОП-логика широко используется как наиболее экономичная, а совершенствование технологии позволяет приблизить быстродействие КМОП к ТТЛШ. На рис. 3.9 приведена схема инвертора КМОП-типа. Транзистор VT1 – n-канальный, VT2 – р-канальный. Напомним, что n-канальный транзистор открывается и принимает минимальное сопротивление при положительном напряжении, а р-канальный – при отрицательном напряжении затвор-исток.
а б в Рис. 3.9. Схема КМОП-инвертора (а);
Запираются оба транзистора, при напряжении затвор-исток, близко к нулю. Транзистор VT3 является входным другого КМОП-элемента, являющегося нагрузкой для данного. При низком уровне входного сигнала [Х(0)<<Е] транзистор VT1 заперт, VT2 открыт, т. к. на его затворе положительное напряжение меньше, чем на истоке. На выходе формируется высокий уровень Y(1)=E (рис. 3.9, б). При высоком уровне входного сигнала [Х(1)=Е] транзистор VT2 заперт, т. к. его напряжение затвор–исток практически равно нулю, а VT1 – открыт и на выходе формируется низкий потенциал (рис. 3.9, в). При отсутствии тока нагрузки (входного тока VT3) потребление энергии от источника в любом случае из двух статических состояний отсутствует. С использованием комплементарных пар можно строить как элементы И-НЕ, так и ИЛИ-НЕ (рис. 3.10).
а б Рис. 3.10. Варианты КМОП элементов И-НЕ (а), ИЛИ-НЕ (б)
|