КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Обоснование методаНа твердый шарик, падающий в жидкости, действуют три силы: сила тяжести, сила Архимеда и сила трения шарика о жидкость. Эти силы равны соответственно . Обозначим скорость шарика относительно жидкости через . Молекулы жидкости в слое, прилегающем к шарику, движутся со скоростью . Распределение жидкостей в соседних слоях, увлекаемых силами внутреннего трения, должно иметь вид, изображенный на рис. 2-4.5. В непосредственной близости от поверхности шара эта скорость равна , а по мере удаления уменьшается и практически становится равной нулю на некотором расстоянии L от поверхности шарика. Очевидно, что чем больше радиус шара, тем большая масса жидкости вовлекается в движение, и L должно быть пропорционально : L=kr. (2-4.16) Величина коэффициента пропорциональности несколько различна для передней и задней частей тела, поэтому под градиентом скорости следует понимать среднее значение градиента скорости на поверхности шара . (2-4.17) Полная сила трения, испытываемая движущимся шариком, (2-4.18) где . Согласно Стоксу, величина для шара равна . Следовательно, (2-4.19) т. е. сила трения прямо пропорциональна вязкости жидкости, радиусу шара и скорости его движения. Выражение (2-4.19) носит название закона Стокса: (2-4.20) В случае падения шарика в жидкости, все три силы будут направлены по вертикали. Если шарик движется равномерно, то такое движение шарика называется установившимся. Физически это означает, что сила трения и сила Архимеда уравновешиваются силой тяжести, т. е. движение происходит по инерции с постоянной скоростью. Тогда уравнение (18) можно переписать: (2-4.21) Последнее выражение позволяет определить коэффициент внутреннего трения в жидкости, в которой движется шарик. Так как жидкость всегда находится в каком-то сосуде, имеющем стенки, то учет наличия стенок несколько изменит выражение для коэффициента вязкости. Для жидкости, находящейся в цилиндре с радиусом , коэффициент вязкости равен (2-4.22)
|