Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Максимальна корисна потужність виділяється тільки при узгоджені опору навантаження та внутрішнього опору джерела струму




Читайте также:
  1. А. Сміт про сутність і джерела багатства
  2. АДМІНІСТРАТИВНА ВІДПОВІДАЛЬНІСТЬ ЗА ПРАВОПОРУШЕННЯ В СФЕРІ ОБІГУ НАРКОТИКІВ
  3. АДМІНІСТРАТИВНІ ПРАВОПОРУШЕННЯ НА ТРАНСПОРТІ
  4. АДМІНІСТРАТИВНІ ПРАВОПОРУШЕННЯ, ЩО ПОСЯГАЮТЬ НА ВСТАНОВЛЕНИЙ ПОРЯДОК УПРАВЛІННЯ
  5. АДМІНІСТРАТИВНІ ПРАВОПОРУШЕННЯ, ЩО ПОСЯГАЮТЬ НА ГРОМАДСЬКИЙ ПОРЯДОК І ГРОМАДСЬКУ БЕЗПЕКУ
  6. Антропогенне навантаження
  7. Визначення внутрішнього ринку ЄС
  8. Відсутність в рефераті посилань на літературні джерела або їх неправильне оформлення може потягнути за собою не зарахування реферату або зниження оцінки.
  9. Всього : максимальна кількість балів складає 30.
  10. Джерела

Це має важливе значення при будь яких джерелах і споживачах струму, для передаючих та приймаючих пристроїв, вихідних каскадів тощо.

Порядок виконання роботи

1. Зібрати електричну схему (мал. 3), зробити відсутні позначки.

2. Міняючи положення повзунка реостата, виміряти

значення струму І і напруги U

3. Виміряти за (п. 2) 10-12 разів з інтервалом 0,05 А

від О до 1 А

4. Записати отримані значення до таблиці та розрахувати R і Р для кожного значення.

5. Побудувати графік залежності корисної мал.3

потужності Р від опору навантаження R 1.

 

Результати вимірювань та обчислень:

 

Обчислення:

Висновок: ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

 

Контрольні запитання:

 

  1. Як визначається корисна і повна потужність електричного кола ?_____________

________________________________________________________________________________________________________________________________________________________________________________________________________________________

  1. Що означає „коротке замикання” і які значення І, U та Р при цьому? __________

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

  1. Вивести формулу залежності Ркор від R __________________________________

________________________________________________________________________________________________________________________________________________________________________________________________________________________

  1. В якому випадку від даного джерела можна відібрати максимально корисну потужність?___________________________________________________________

________________________________________________________________________________________________________________________________________________________________________________________________________________________



  1. Чому дорівнює коефіцієнт корисної дії електричного кола, якщо ми отримуємо максимально корисну потужність ?_______________________________________

________________________________________________________________________________________________________________________________________________________________________________________________________________________

  1. Навести приклади застосування теоретичних знань за цією темою на практиці __________________________________________________________________________________________________________________________________________

 

 

Підпис викладача:

ЛАБОРАТОРНА РОБОТА № 11

Визначення електрохімічного еквівалента меді

 

Мета роботи : 1. Поглибити знання з провідності провідників другого роду

2. На досліді ознайомитися з явищем „електроліз”;

3. Закріпити знання законів електролізу

4. Експериментально визначити електрохімічний еквівалент міді

Обладнання: - джерело постійного струму;



- електролітична ванна з розчином мідного купоросу;

- два електроди;

- амперметр;

- вольтметр;

- реостат;

- з’єднувальні провідники;

- терези з вагами;

- годинник.

Короткі теоретичні відомості:

 

Провідники II роду — це електроліти, провідність яких обумовлена наявністю великої концентрації вільних іонів, утворення яких найчастіше відбувається в результаті явища електролітичної дисоціації.

При протіканні струму крізь електроліт на електродах ( на аноді і катоді) виділяються або осідають різні речовини залежносто від роду електроліту. Це явище називають електролізом.

Згідно з першим законом Фарадея для електролізу маса виділеної речовини пропорційна силі струму I і часу його протікання крізь електроліт t:

де к – електрохімічний еквівалент, що чисельно дорівнює масі речовини, яка виділилась при проходженні крізь електроліт одиниці кількості електрики . Електрохімічний еквівалент залежить тільки від роду речовини, тому виноситься дотаблиці.

Розрахункову формулу отримаємо з (1):

,

 

де m1 і m2 - маса катода до та після електролізу відповідно.

 

Порядок виконання роботи

 

1. Зачистити один з електродів , промити та просушити

2. Ретельно зважити його, попередньо

перевіривши і при необхідності ЕВ відрегулювати терези.

3. Закріпити цей електрод в утримувач і запам’ятати, що він повинен бути катодом

4. Перевірити кріплення другого електрода і вставити утримувач в електролітичну ванну ЕВ.

5. Зібрати електричну схему (мал. 1).

6. Включити ключ К, за допомогою реостату встановити силу струму 1 А та помітити час.



7. Впродовж 10 хвилин пропускати струм , підтримуючи його постійним, і розімкнути коло.

8. Зняти катод з утримувача , промити, ретельно просушити та зважити.

9. Визначити електрохімічний еквівалент міді відповідно до розрахункової формули (2)

10. Установити табличне значення електрохімічного еквівалента меді і розрахувати відносну похибку вимірів

11. Заповнити таблицю і зробити висновок про зроблену роботу .

 

Результати вимірювань та обчислень:

Сила струму Час Маса катода до електролізу Маса катода після електролізу Електрохімічний еквівалент Відносна похибка
І, А t, с m1, кг m2, кг Дослідне значення Табличне значення δ %
кг\Кл кг/Кл
             

 

Обчислення:

Висновок: _________________________________________________________________________________________________________________________________________________________________________________________________________________________________

 

Контрольні питання:

 

1. Які речовини можуть бути електролітами? ____________________________________

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

2. Від чого залежить провідність електроліту? __________________________________

______________________________________________________________________________________________________________________________________________________

3. Як змінюється питомий опір електроліту з ростом концентрації розчинної речовини ___________________________________________________________________________

______________________________________________________________________________________________________________________________________________________

4. В акумуляторах використовують електроліт з сірчаної кислоти. Як його приготовляють? З концентрованої чи розбавленої кислоти він складається і чому? ____

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

5. Які закони справедливі для електролізу?_____________________________________

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

б. Який фізичний зміст електрохімічного еквівалента й числа Фарадея? ____________

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

7.Вкажіть, де і для чого використовують електроліз_______________________________

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Підпис викладача:

 

Лабораторна робота №12

Вивчення руху заряджених частинок у магнітному полі.

 

Мета роботи : 1. Вивчити дію магнітного поля на заряджені частини, які рухаються в ньому

2. Познайомитися з його проявами в природі і використанні на практиці.

3. По даній фотографії треку частинки розрахувати невідомий параметр.

 

Короткі теоретичні відомості:

 

Магнітне поле завжди взаємодіє з другим магнітним полем. Здавна відомо про взаємодію двох постійних магнітів (наприклад, дія магніту на магнітну стрілку). Оскільки електричний струм завжди створює навкруги себе своє магнітне поле, зовнішнє магнітне поле діє на провідник зі струмом (сила Ампера); так як електричний заряд, що рухається направлено‚ представляє собою теж електричний струм, то магнітне поле діє на такий заряд з силою Лоренца (особистий випадок сили Ампера):

де u- швидкість руху зарядженої частки;

В - індукція магнітного поля;

α - кут між напрямом вектора індукції та напрямком елементарного струму, створеного часткою (при позитивному заряді напрямок струму збігається з напрямком швидкості, при негативному заряді напрямок струму протилежний напрямку швидкості)

Якщо частка влітає перпендикулярно до полю, то сила Лоренца:

а її напрямок визначається ( так само, як сила Ампера) правилом лівої руки, так що напрямок сили Лоренца складає перпендикуляр до індукції поля та швидкості , а тому вона є доцентровою силою Fц і викликає доцентрове прискорення aц і наслідок цього заряджена частка буде рухатися по окружності радіуса R :

Порядок виконання роботи

 

1. Перекреслити фотографію треку частки в магнітному полі.

2. Враховуючи напрямок індукції поля та швидкості частки, визначити знак заряду, користуючись правилом лівої руки.

3. На малюнку показати вектори В і u в початкову мить часу.

4. З рівняння (1) виразити величину, яку треба знайти, перевірити одиницю вимірювань та розмірність.

5. Розрахувати значення використавши дані .

6. Зробити висновок щодо роботи

 

Виконання роботи :

Висновок: ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

 

Контрольні питання:

 

1. На яку частку і чому діє сила Лоренца?_____________________________________

______________________________________________________________________________________________________________________________________________________

2. Як читається правило лівої руки?_____________________________________________

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

 

 

З. Як використовується правило лівої руки для:

 

а) позитивного заряду________________________________________________________

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

б) негативного заряду ________________________________________________________

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

4. Як буде рухатися заряджена частка, якщо кут між індукцією поля і струмом

а) α = 0 º___________________________________________________________________

___________________________________________________________________________

б) α =90º ____________________________________________________________

___________________________________________________________________

в) 0º<α<90º _________________________________________________________

___________________________________________________________________

5. Де використовується явище руху частинок у магнітному полі? ___________________

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

 

Підпис викладача:

 

 

Лабораторна робота №13

Визначення показника заломлення скла.

Мета роботи:1. Закріпити знання про явища, які відбуваються при переході світла з одного середовища в інше.

2. Шляхом досліду визначити показник заломлення скла та порівняти його значення з табличним

Обладнання: - скляна прямокутна пластина

- планшет;;

- чотири булавки ;

Короткі теоретичні відомості:

В однорідному середовищі швидкість світла постійна, і промінь світла розповсюджується прямолінійно. При переході межі розділу двох середовищ промінь переломлюється, тому що швидкість світла різна. Припустимо , промінь світла йдее з оптично менш щільного середовища , де швидкість світла u1 більша, в оптично більш щільне середовище, де швидкість світла u2 менша ( для зручності ми взяли два промені). Фронт хвилі завжди перпендикулярний напрямку розповсюдження і переміщується паралельно. Таким чином, розповсюджуючись в першому середовищі, в якусь мить часу фронт досягне положення АВ. З цього моменту точка А фронта хвилі буде розповсюджуватися в другому середовищі, а точка В продовжує розповсюджуватися в першому середовищі.

в

а

В a a

 

А А

 

b

 

 

мал..1 мал.2 Вид на грань мал..3

 

За час t точка В пройде шлях ВС= ט1 t , а точка А за цей же час пройде шлях АD = ט 2 t

Так як ט2< ט1 , то АD<ВС, і фронт хвилі в другому середовищі буде займати положення DC; оскільки промені в іншому середовищі a¢ i b¢ перпендикулярні фронту DС, то вони заломляться до перпендикуляру, встановленого до границі розділу двох середовищ так, що кут падіння промеінів α буде більшим за кут заломлення β (мал..1).

Якщо ж промінь світла буде іти навпаки з оптично більш щільного середовища в оптично менш щільне середовище, то він буде заломлюватися від перпендикуляру, і в цьому випадку кут заломлення β буде більшим за кут падіння α.

Відношення синуса кута падіння до синусу кута заломлення є величиною постійною для двох середовищ і називається відносним показником заломлення другого середовища відносно першого ( п 2,1 )

Відносний показник заломлення дорівнює відношенню абсолютних показників заломлення:

Абсолютний показник заломлення будь-якого середовища п визначається як відносний, якщо промінь буде рухатися з вакууму в це середовище, або представить собою відношення швидкості світла в вакуумі до швидкості світла в даному середовищі:

Оскільки повітря має показник заломлення дуже близький до одиниці , як для вакууму , то, якщо промінь світла рухається з повітря в будь-яке середовище, можна прийняти що, ми отримаємо абсолютний показник заломлення середовища.

Порядок виконання роботи

Увага! Ця робота потребує акуратності та уваги!

 

1. Аркуш паперу в клітку положити на планшет.

2. На середину листа положити скляну пластинку так, щоб верхня грань збіглася з горизонтальною лінією паперу.

3. Окреслити олівцем контури пластинки. Намагатися, щоб надалі пластинка не змінила свого положення.

4. Притискаючи пластинку рукою, на відстані 1/3 довжини верхньої грані від її початку вколоти вертикально в лист першу булавку, в точку перехрещення вертикальної і

горизонтальної ліній паперу в клітку.

5. По діагоналі кліток від цієї точки вліво вверх на мінімальну відстань, наскільки дозволяє аркуш паперу , вколоти другу булавку.

б. Обережно підняти планшет, тримаючи його горизонтально, (пластинка не повинна зміститися!,) подивіться на обидві булавки через нижню грань пластинки.

7. Заплющити одне око, а другим дивитися на булавки поверх пластинки і, повертаючи планшет, сумістити їх - вони повинні бути на одній лінії.

8. Подивіться в цьому положенні скрізь товщу пластинки. На грані буде зображення нижньої частини булавок у вигляді вертикальної риси.

9. Перевірити збіг булавок поверх пластинки, а там, де розташована риска, на грані пластинки вколоти третю булавку, не торкаючись пластинки.

10. Взяти четверту булавку і вколоти її на максимальній відстані, наскільки дозволяє аркуш, від третьої булавки так, щоб вони збігалися, одночасно перевірити збіг 1 і 2 булавок ( див. мал..2).

11. Олівцем відмітити положення булавок.

12. Зняти пластинку, зняти лист.

13. Через точки положень булавок 1 і 2 провести пряму до перехрещення з верхньої грані в точці А - падаючий промінь.

14. Через точки положення булавок 3 і 4 провести пряму до перехрещення з нижньою гранню в точці В – проміні які пройшли крізь пластинку .

15. З’єднати точки АВ- це заломлений промінь.

16. Через точку А провести перпендикуляр до верхньої грані пластинки і на ньому відкласти по різні сторони від точки А рівні відрізки АС и АВ ( 5-6 кліток паперу).

17. З точки С на падаючий промінь опустити перпендикуляр СМ.

18. З точки В на заломлений промінь опустить перпендикуляр DN.

19. Виміряти довжину відрізків СМ і DN (мал.3)

20. Розрахувати показник заломлення скла :

21. Зробити висновок про виконану роботу.

Висновок: ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Контрольні запитання:

 

1. Чому промінь світла при переході межі розділу двох середовищ заломлюється і куди?______________________________________________________________________

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

2. Що представляють з себе відносний та абсолютний показники заломлення? _______

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

3. Яке середовище називається оптично більш щільним?_____________ _____ _____

4. Як заломлюється промінь , який рухається з оптично більш щільного середовища в оптично менш щільне?______________________________________________________ ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

5. У чому полягає явище повного внутрішнього заломлення ? Де воно використовується? __________________________________________________________

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Підпис викладача:

Лабораторна робота №14 .

Визначення довжини світлової хвилі за допомогою дифракційної решітки

Мета роботи:1. Поглибити знання про хвильові властивості світла.

2. Розглянути явище дифракції і її практичне застосування за допомогою дифракційної решітки.

2. На досліді познайомитися з дифракційними спектрами і експериментально визначити довжину хвиль світла.

Обладнання: - прилад для спостереження дифракційних спектрів

- дифракційна решітка;

- джерело світла.

Короткі теоретичні відомості:

 

Дифракція світла —це явище огинання світловими хвилями перешкоди і попадання їх в область геометричної тіні . Дифракція приводить до відхилення променів від початкового напрямку і до порушення закону прямолінійного розповсюдження світла.

Найбільш виразно дифракція спостерігається тоді, коли розміри перешкоди (або отвір,

або непрозорий диск) порівняний з довжиною

хвилі світла.

На явищі дифракції полягає дія дифракційної решітки, яка представляє звичайно прозору пластинку з нанесеним на ній рядом дуже вузьких паралельних прозорих

мал.1 і непрозорих смуг, які чергуються (мал.1).

Якщо ширина прозорих смуг дорівнює а, а ширина непрозорих смуг — b, то величина:

дифракційна називається періодом решітки і звичайно

решітка представляє соті долі міліметра.

лінза Припустимо, на дифракційну решітку (мал.2)

падають нормально світові проміні, які мають

хвильовий фронт, паралельний площині

решітки. В якусь мить часу він досягне

положення щілини решітки. За принципом

екран Гюйгенса-Френеля кожна точка фронту хвилі є

червоний. Р фіол. фіол червоний. самостійним джерелом вторинних

промінь пром. пром. промінь когерентних хвиль і тому починає

випромінювати світло під різними кутами

дифракції φ вліво и вправо,

Побічні центральний

максимуми максимум

мал.2

Тоді всі вторинні промені, дифраговані під конкретним кутом φ, будуть збиратися в точці Р лінзи. Ми будемо спостерігати інтерференцію дифрагованих промінів.

Залежно від різниці ходу променів ∆r в точці Р промені, накладаються один на одного і дадуть максимум або мінімум світла. Максимум буде у випадк, коли:

,

де λ – довжина світової хвилі;

k – порядок максимуму (k=0 коли φ=0 – центральний максимум; k=1 – перший побічний максимум).

Це рівняння носить назву рівняння дифракційної решітки .

Якщо решітку освітлювати не монохроматичним, а білим світлом, то в межах одного і того ж максимума (к= const)

а червоний промінь сильніше дифрагує, ніж

фіолетовий. В результаті утворюється

дифракційний спектр у кожному побічному

максимумі з симетрично розташованими

лініями відносно центрального максимуму.

дифракційна В експериментальному пристрої

решітка параллельний пучок білого світла падає

нормально на дифракційну решітку, а

промеіні певної довжини хвилі λ ,

дифраговані під кутом дифракції φ,

спостерігаються оком у точці Р у вигляді центральний яскравої лінії певного кольору

максимум Із умов максимуму:

мал.3 (центр шкали)

 

Оскільки відстань l від шкали до дифракційної решітки значно більша за відстань х від центру шкали до лінії , яка спостерігається, то

а з трикутника АОР:

Тоді розрахункова формула буде мати вигляд:

Порядок виконання роботи

1. Вставити дифракційну решітку з d=0,01 мм в рамку приладу.

2. Встановити екран з поперечною шкалою на другому кінці повздовжньої лінійки.

3. Дивлячись скрізь дифракційну решітку, направити прилад на джерело світла і знайти дифракційні спектри.

4. Домогтися симетрії спектрів відносно центру шкали.

5. Визначити відстань х від центру повздовжньої шкали до фіолетових, зелених та червоних променів у спектрі першого порядку.

6. Визначити відстань l від дифракційної решітки до шкали.

7. Розрахувати довжину хвиль фіолетових, зелених та червоних променів за формулою (2).

8. Виміряти х і 1 для однієї червоної лінії в спектрі 2-го порядку, розрахувати довжину хвилі червоних променів і удосконалитись в збіганні значень довжин хвиль першого та другого порядків.

9. Результати вимірювань і обчислень записати до таблицю і зробити висновки.

 

Результати вимірювань та обчислень:

№ вимірювань Колір лінії спектра Порядок спектра Постійна дифракційної решітки Відстань від дифр. решітки до шкали Відстань від центру шкали до лінії спектра Довжина світової хвилі
k d l х λ
- м м м м
Червоний        
Зелений        
Фіолетовий        
Червоний        

 

Обчислення:

Висновок: ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

 

Контрольні питання:

 

1. В чому полягає принцип Гюйгенса-Френеля?_________________________________

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

2. Для яких процесів характерні явища інтерференції та дифракції?__________________

___________________________________________________________________________

З. Що таке інтерференція ?____________________________________________________

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

4. Що таке дифракція?_______________________________________________________

______________________________________________________________________________________________________________________________________________________

5. В результаті якого явища ми спостерігаємо дифракційну картину?________________

______________________________________________________________________________________________________________________________________________________

б. В яких випадках на практиці спостерігається дифракція?________________________

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

7. Що представляє собою дифракційна решітка?_________________________________

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

8. Як записати рівняння дифракційної решітки?__________________________________

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

9. Чому при освітленні дифракційної решітки білим світлом виникає спектр? ________

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

10. Наведіть приклади використання дифракційної решітки?______________________

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Підпис викладача:

ЛАБОРАТОРНА РОБОТА №15

Дослідження спектрів випромінювання речовин за допомогою спектроскопу.

Мета роботи:1. Поглибити знання щодо виникнення, отримання та властивостей спектрів .

2. Вивчити на досліді суцільні та лінійчасті спектри, спектри випромінювання та поглинання деяких речовин.

Обладнання: - спектроскоп;

- газосвітні трубки;

- високовольтний перетворювач;

- штатив;

- світофільтри;

- спиртівка;

- азбест.

Короткі теоретичні відомості:

Ні одне з джерел (окрім лазерів) не дає монохроматичного світла (світла суворо визначеної довжини хвилі). Сукупність довжин хвиль (або частот), які вмістяться у випромінюванні будь якої речовини, називається спектром випромінювання. І . Ньютон уперше встановив, що біле світло має складну структуру. Воно складається з безмежної множини монохроматичних промінів, безперервно слідуючих один за одним , і тому він спостерігав суцільний або непреривний спектр. Ньютон умовно розділив його на сім основних ділянок за їх кольором: червоний, оранжевий, жовтий, зелений, голубий, синій та фіолетовий (за зменшенням довжини хвилі). Суцільний спектр дають, будучи розігрітими, тверді, рідини та сильно стиснені гази, а також високотемпературна плазма. Розігріті атомарні гази дають лінійчастий спектр випромінювання - це набір кольорових вузьких ліній визначених частот на темному фоні. Всі речовини в атомарному вигляді дають лінійчасті спектри, а в молекулярному вигляді — смугасті спектри. Кожна смуга представляє собою сукупність дуже близько розташованих ліній - смуги між собою розділяються темними проміжками.

Якщо пропускати біле світло крізь

холодний (не випромінюючий ) газ, то

на фоні суцільного спектра

Б і л е Ч е р - з’являються темні вузькі лінії

с в і т л о в о н и й означених частот. Це спектр

поглинання. Газ поглинає світло саме

тих довжин хвиль, які він випромінює

в розігрітому стані. Таким чином,

спектр поглинання за частотою

відповідає спектру випромінювання.

За походженням спектри бувають

призматичні та дифракційні.

Призматичний спектр утворюється

при проходженні променя білого

світла крізь тригранну призму (дослід

Ньютона. мал..1). Завдяки явищу

дисперсії - залежності показника

заломлення матеріалу від довжини

хвилі світла - показник заломлення

призми для червоних променів

червон. Фіол. Фіолет. червоний (велика довжина) найменший, а для

. фіолетових променів (мала

мал2 довжина хвилі) найбільший для

видимих променів. В результаті на екрані і виникає суцільний спектр. На цьому принципі побудовано прилад для спостереження спектрів – спектроскоп.

Дифракційні спектри виникають в області побічних максимумів при освітленні дифракційної решітки білим світлом (мал.2).

З рівняння дифракційної решітки (умова максимуму)

 

витікає

де d – постійна решітки, k – порядок спектру, λ – довжина хвилі, φ – кут дифракції. Якщо той же максимум то

Тому червоні промені дифрагують сильніше і кут дифракції φ більший, а фіолетові промені дифрагують слабкіше і φ є меншим. В результаті побічні максимуми і представляють собою спектр. Чим менша постійна решітки d, тим сильніше кут дифракції залежить від довжини хвилі, тим більше можна розтягнути спектр (в спектроскопі цього зробити не можна). Внаслідок цього дифракційні спектри володіють великою дозвільною спроможністю , мають значні переваги і широку область застосування .

Через те що кожний хімічний елемент в атомарному розігрітому вигляді випромінює спектр ліній означених , характерних тільки для нього частот, то дослідження лінійчастих спектрів будь-якої речовини дозволяє визначити , з яких хімічних елементів вона складається (якісний аналіз), а за інтенсивністю найбільш характерних ліній можливо судити про кількість даного елемента (кількісний аналіз).

Метод визначення якісного і кількісного складу речовини за його спектром називається спектральним аналізом, який широко застосовується в промисловості , наприклад, у металургійному виробництві , в гірничій промисловості при пошуках корисних копалин та інші. Перевагою спектрального аналізу є дуже висока чутливість, простота й швидкість отримання результатів. Спектральний аналіз дозволив визначити склад небесних тіл, віддалених від Землі на мільярди світових років, їх температуру і швидкість руху.

Порядок виконання роботи

1. Розташувати спектроскоп так щоб у нього потраплялоденне світло, спостереження суцільного спектру було яскравим та чітким.

2. Розмістив перед спектроскопом світові фільтри спостерігати спектри поглинання.

3. Розмістити спиртівку перед щілиною коліматора спектроскопа. Внести в полум’я спиртівки азбест , який замочено в розчині поваренної солі і спостерігати спектр випромінювання натрію .

4. Розмістити проти щілини коліматора газосвітну трубку і підключити електроди.

5. Увімкнути високовольтний перетворювач та спостерігати лінійчасті спектри газів.

б. Всі спектри замалювати кольоровими олівцями .

Отримані спектри:

Висновок: __________________________________________________________________

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Контрольні питання

  1. Що представляє собою спектр?__________________________________________

________________________________________________________________________________________________________________________________________________

  1. Які спектри ви знаєте? _________________________________________________

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

  1. Яким чином можливо отримати спектр у природі? __________________________

________________________________________________________________________________________________________________________________________________________________________________________________________________________

  1. Від чого залежить частота ліній у лінійчатих спектрах? ____________________

________________________________________________________________________________________________________________________________________________________________________________________________________________________

  1. Як здійснити спектральний аналіз? ______________________________________

________________________________________________________________________________________________________________________________________________________________________________________________________________________

  1. Які переваги спектрального аналізу? Де він використовується ? ______________

________________________________________________________________________________________________________________________________________________________________________________________________________________________

Підпис викладача:


Дата добавления: 2015-09-14; просмотров: 32; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.112 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты