КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Принцип работы биполярного транзистораСтр 1 из 12Следующая ⇒ Рассмотрим в первом приближении физические процессы, протекающие в транзисторе в активном режиме, и постараемся оценить, каким образом эти процессы позволяют усиливать электрические сигналы. Для простоты анализа будем использовать плоскую одномерную модель транзистора, представленную на рис. 3.4. Эта модель предполагает, что p-n- переходы транзистора являются плоскими, и все физические величины в структуре, в частности, концентрации носителей заряда, зависят только от одной продольной координаты x , что соответствует бесконечным поперечным размерам структуры. С учетом того, что в реальной структуре транзистора (см. рис. 3.1) ширина базы значительно меньше поперечных размеров переходов, плоская одномерная модель достаточно хорошо отражает процессы, протекающие в транзисторе. Рассмотрим вначале статическую ситуацию, при которой на переходы транзистора от внешних источников питания подаются постоянные напряжения uЭБ и uКБ - см. рис. 3.4. Заметим, что приведенный на рисунке транзистор включен по схеме с общей базой. Напряжения uЭБ <0 и uКБ >0 обеспечивают открытое состояние эмиттерного перехода и закрытое состояние коллекторного перехода, что соответствует активному режиму работы транзистора. Через открытый эмиттерный переход протекают основные носители заряда. Как уже отмечалось в п. 3.1, из-за резкой асимметрии эмиттерного перехода инжекцию через него можно считать односторонней, то есть достаточно рассматривать только поток электронов, инжектируемых из эмиттера в базу - см. рис. 3.4. Этот поток очень сильно зависит от напряжения на эмиттерном переходе uЭБ, экспоненциально возрастая с увеличением ÷ uЭБ÷ . Инжектированные в базу электроны оказываются в ней избыточными (неравновесными) неосновными носителями заряда. Вследствие диффузии они движутся через базу к коллекторному переходу, частично рекомбинируя с основными носителями - дырками. Достигнувшие коллекторного перехода электроны экстрагируются полем закрытого коллекторного перехода в коллектор. В связи с тем, что в коллекторном переходе отсутствует потенциальный барьер для электронов, движущихся из базы в коллектор, этот поток в первом приближении не зависит от напряжения на коллекторном переходе uКБ. Таким образом, в активном режиме всю структуру транзистора от эмиттера до коллектора пронизывает сквозной поток электронов, создающий во внешних цепях эмиттера и коллектора токи iЭ и iК , направленные навстречу движению электронов. Важно подчеркнуть, что этот поток электронов и, соответственно, ток коллектора iК, являющийся выходным током транзистора, очень эффективно управляются входным напряжением uЭБ и не зависят от выходного напряжения uКБ. Эффективное управление выходным током с помощью входного напряжения составляет основу принципа работы биполярного транзистора и позволяет использовать транзистор для усиления электрических сигналов. Схема простейшего усилительного каскада на транзисторе, включенном по схеме ОБ, приведена на рис. 3.5. По сравнению со схемой, приведенной на рис. 3.4, в эмиттерную цепь введен источник переменного напряжения uЭБ- , а в коллекторную цепь включен нагрузочный резистор RК. Переменное напряжение uЭБ- наряду с напряжением, подаваемым от источника питания, воздействует на сквозной поток электронов, движущихся из эмиттера в коллектор. В результате этого воздействия коллекторный ток приобретает переменную составляющую iК– , которая благодаря очень высокой эффективности управления может быть значительной даже при очень маленькой величине uЭБ- . При протекании тока коллектора через нагрузочный резистор на нем выделяется напряжение, также имеющее переменную составляющую uКБ- = iК– RК. Это выходное переменное напряжение при достаточно большом сопротивлении RК может значительно превосходить величину входного переменного напряжения uЭБ- (uКБ- >>uЭБ- ). Таким образом, транзистор, включенный по схеме ОБ, усиливает электрические сигналы по напряжению. Что касается усиления по току, то рассмотренная схема его не обеспечивает, поскольку входной и выходной токи примерно равны друг другу ( iЭ » iК ).
8. Схема соединения транзистора с общей базой.
9. Биполярный транзистор как активный четырехполюсник. Свойства транзистора характеризуются параметрами, которые делятся на: 1) физические – коэффициент усиления по току a, сопротивления rэ, rб, rк; эти параметры характеризуют свойства самого транзистора, независимо от схемы включения; 2) схемотехнические – имеют различные значения для разных схем включения. Существуют несколько систем схемотехнических параметров, но все они основаны на том, что транзистор как элемент схемы на малом переменном сигнале рассматривается в виде линейного активного четырехполюсника
Блок-схема четырехполюсника с h - параметрами.
Основой для анализа четырехполюсника является система уравнений, связывающая входные и выходные токи I1 и I2 и напряжения U1 и U2. Таких систем может быть три, в зависимости от того, что принято за независимые переменные y, z и h. Наибольшее распространение получила система h-параметров, при которой за независимые переменные для биполярного транзистора принимают ток на входе I1 напряжение на выходе U2. Эта система имеет вид: Выбор h-параметров (а не y- или z-параметров) связан с тем, что для биполярного транзистора удобно реализовать режим холостого хода на входе (I1 = 0) и режим короткого замыкания на выходе (U2 =0). Каждый из h-параметров имеет определенный физический смысл. Параметр h11 представляет собой величину входного сопротивления транзистора rвх при коротком замыкании на выходе (U2=0) и измеряется в Омах. h11 = U1/I1; при U2=0 Параметр h12 называется коэффициентом обратной связи и равен отношению входного напряжения U1 к выходному U2 при разомкнутой входной цепи(I1=0). h12 = U1/U2; при I1=0 Параметр h22 представляет собой выходную проводимость транзистора при разомкнутом входе (I1=0) и измеряется в микросимменсах ( 1 мкСм =10-6См = 1 мкА/В). h22 = I2/U2; при I1=0 Параметр h21 – коэффициент прямой передачи тока при коротком замыкании на выходе. h21 = I2/I1; при U2=0 Поскольку транзистор имеет три электрода и используется как четырехполюсник, то один из его электродов является общим для входной и выходной цепи (рис.11). При этом значения h-параметров отличаются в зависимости от схемы включения биполярного транзистора: hб для схемы с общей базой или hэ для схемы с общим эмиттером.
h - параметры можно определить с помощью статических характеристик методом измерения их на постоянном токе. Тогда роль малого переменного тока и напряжения будут играть малые приращения постоянных токов DIб, DIк, и напряжений DUк, DUб. Для схемы с общим эмиттером: В справочниках чаще указаны h-параметры для схемы с ОБ (hб), которые можно найти путем пересчета, если известны h-параметры для схемы с ОЭ (hэ): Между физческими параметрами и h-параметрами для биполярного транзистора в схеме с общей базой существует взаимосвязь:
10. Схема соединения биполярного транзистора с общей базой. 11. Схема соединения биполярного транзистора с общим эмиттером В большинстве электрических схем транзистор используется в качестве четырехполюсника, то есть устройства, имеющего два входных и два выходных вывода. Очевидно, что, поскольку транзистор имеет только три вывода, для его использования в качестве четырехполюсника необходимо один из выводов транзистора сделать общим для входной и выходной цепей. Соответственно различают три схемы включения транзистора: схемы с общей базой (ОБ), общим эмиттером (ОЭ) и общим коллектором(ОК). На рис. 3.3 показаны полярности напряжений между электродами и направления токов, соответствующие активному режиму в указанных схемах включения транзистора. Следует отметить, что токи транзистора обозначаются одним индексом, соответствующим названию электрода, во внешней цепи которого протекает данный ток, а напряжения между электродами обозначаются двумя индексами, причем вторым указывается индекс, соответствующий названию общего электрода (см. рис. 3.3). В схеме с общей базой (см. рис. 3.3,а) В схеме с общим эмиттером (см. рис. 3.3,б) входной цепью является цепь базы, а выходной - цепь коллектора. В схеме ОЭ напряжение uБЭ>0 прикладывается непосредственно к эмиттерному переходу и отпирает его. Напряжение uКЭ распределяется между обоими переходами: В схеме с общим коллектором (см. рис.3.3,в) входной цепью является цепь базы, а выходной - цепь эмиттера.
12. Работа биполярного транзистора с нагрузкой в цепи коллектора (схема с общим эмиттером). Рис 3.3 В
13.Температурное свойство транзисторов. Влияние температуры на работу биполярного транзистора обусловлено тремя физическими факторами: уменьшением потенциальных барьеров в переходах, увеличением тепловых токов переходов и увеличением коэффициентов передачи токов с ростом температуры. Уменьшение потенциального барьера j К с ростом температуры также, как и в изолированном переходе, (см. раздел 2) приводит к усилению инжекции, в результате чего увеличивается входной ток транзистора. На рис. 3.24 приведены входные характеристики транзистора в схеме с общей базой, полученные при различных температурах (заметим, что входные характеристики в схеме ОЭ при различных температурах выглядят аналогично и отличаются лишь масштабом по оси токов так как iК >>iБ. Как видно из рисунка 3.24, увеличение входного тока с ростом температуры эквивалентно смещению характеристики в сторону меньших входных напряжений. Это смещение описывается температурным коэффициентом напряжения который составляет для кремниевых транзисторов e = - 3 мВ/град. В расчетах транзисторных схем часто используют кусочно-линейную аппроксимацию входных характеристик. На рис. 3.24,б приведены идеализированные аппроксимированные характеристики без учета влияния сопротивления тела базы r¢Б. Как видно из рисунка при r¢Б =0 характеристики проходят вертикально и напряжение на переходе равно пороговому ½ - uЭБ½ = U*. Изменение этого напряжения с температурой также описывается коэффициентом e .
Увеличение тепловых токов переходов с ростом температуры, подробно рассмотренное в разделе 2, описывается приводимыми в справочниках температурными зависимостями токов IКБ0, IЭБ0. Типовые зависимости токов IКБ0 и IЭБ0 от температуры для кремниевого маломощного транзистора приведены на рис. 3.25. Использование логарифмического масштаба по оси ординат позволило представить экспоненциальную зависимость токов от температуры в линейном виде. Как видно из рисунка, в рабочем интервале температур транзистора (-60 ° ...+ 80 ° C) токи IКБ0 и IЭБ0 могут изменяться на 1...2 порядка. Следует заметить, что отмеченный рост тепловых токов заметно сказывается на выходных характеристиках лишь германиевых транзисторов, что связано с относительно большой величиной самих тепловых токов. В кремниевых транзисторах тепловые токи очень малы, поэтому их изменение с температурой не оказывает заметного влияния на характеристики. Увеличение коэффициента передачи тока эмиттера a и тока базы b с ростом температуры обусловлено ростом времени жизни электронов в базе (см. раздел 1) и соответствующим ослаблением их рекомбинации с дырками. На рис. 3.26 приведены типичные температурные зависимости коэффициентов a и b , нормированных к значениям, полученным при комнатной температуре ( t =20 ° C). Из рисунка видно, что если изменение a с температурой выражено очень слабо (в рабочем интервале температур оно не превышает нескольких процентов), то изменение b может достигать нескольких сотен процентов Сказанное выше иллюстрируют приведенные на рис. 3.27 выходные характеристики транзистора в схемах ОБ и ОЭ, полученные при различных температурах. Как видно из рисунка, увеличение температуры приводит к смещению (дрейфу) характеристик в сторону более высоких токов коллектора. При этом в схеме ОБ при фиксированном токе эмиттера D iК= D a iЭ температурный дрейф характеристик выражен довольно слабо, что объясняется слабой температурной зависимостью коэффициента передачи тока эмиттера a - см. рис 3.26. У характеристик для схемы ОЭ, снимаемых при iБ =const, в связи с сильной температурной зависимостью коэффициента передачи тока базы b температурный дрейф очень велик - изменение тока коллектора D iК= D b iБ может достигать несколько десятков и даже сотен процентов. Температурная нестабильность характеристик транзистора в схеме ОЭ требует специальных мер по стабилизации рабочей точки. На рис. 3.27 приведены три типовые схемы задания режима работы транзистора по постоянному току. В схеме, приведенной на рис 3.27,а внешние элементы задают ток базы Отсюда можно записать выражение для расчета коллекторного тока: Оценим изменение тока IК при изменении температуры на 20 ° С. Будем полагать EК=10 В, RБ=100 кОм, b (20 ° С)=100, U*(20 ° С)=0.7В и IКЭ0(20 ° С)=5мкА, откуда IК(20 ° С )=100 · 10/10 5-100 · 0.7/10 5+5 · 10 -6= =9.305 мА. Будем также считать, что изменение b при изменении температуры на 20 ° С составляет 50%, изменение U* определяется коэффициентом e = -2 мВ/град , изменение IКЭ0 определяется температурой его удвоения T* = 5 ° С. Тогда несложно определить значения b , U* и IКЭ0 при t ° =40 ° С: b (40 ° С) =1,5 ·100=150, U*(40 ° С)=0,7-20 ·2 ·10 -3=0,66 В и IКЭ0( 40 ° С)=2 4 ·5 ·10 -6=160 мкА. Тогда ток IК ( 40 ° С)=150·10/10 5-150 ·0,66/10 5+160·10 -6=14,17 мА, то есть ток IК изменился на 52,3 % и основной вклад в это изменение внес коэффициент передачи тока базы b . Расчет показывает, что эта схема обладает низкой температурной стабильностью. В схеме, приведенной на рис. 3.28,б, внешние элементы задают ток эмиттера и . Таким образом, в этой схеме обеспечивается высокая температурная стабильность (как в схеме ОБ), правда достигается она за счет использования дополнительного источника питания. Следует заметить, что указанная схема представляет собой по переменному току - схему ОЭ, а по постоянному току - схему ОБ. Третья схема (см. рис. 3.28,в) занимает промежуточное по термостабильности положение между двумя первыми схемами. В этой схеме фиксируется напряжение uБЭ и при рациональном выборе RБ1,RБ2 и RЭ температурная стабильность всего в 2 - 3 раза хуже, чем во второй схеме.
14. Частотное свойство транзисторов. Процесс распространения инжектированных в базу неосновных носителей заряда от эмиттерного до коллекторного перехода идет диффузионным путем. Этот процесс достаточно медленный и инжектированные из эмиттера носители достигнут коллектора не ранее, чем за время диффузии носителей через базу, определяемое как . Такое запаздывание приведет к сдвигу фаз между током в эмиттерной и коллекторной цепи. Рассмотрим эти процессы более подробно для биполярного транзистора в схеме с общей базой. Предположим, что в эмиттерной цепи от генератора тока в момент времени t = 0 подали импульс тока длительностью Т большей, чем характеристическое время диффузии . Ток в коллекторной цепи появится только через время причем вследствие распределения по скоростям в процессе диффузионного переноса фронт импульса будет размываться в пределах временного интервала t1. Через время + t1 в коллекторной цепи установится ток, равный . Через время t = T, когда импульс тока в эмиттерной цепи закончится, в коллекторной цепи будет продолжать течь ток до времени T + . Затем также вследствие размытия фронта импульса коллекторный ток будет спадать до нуля за время t1, после T + . На рисунке 1.18.1а показаны эпюры эмиттерного (пунктир) и коллекторного (сплошная линия) токов при трансляции эпюра коллекторного тока на интервал времени . Рис. 1.18.1. Эпюры эмиттерного (пунктир) и коллекторного (сплошная линия) токов при трансляции эпюра коллекторного тока на интервал времени . Таким образом, при больших длительностях импульсов эмиттерного тока частота сигналов в коллекторной цепи останется неизменной, амплитуда коллекторного тока составит , и будет наблюдаться сдвиг фаз между эмиттерным Iэ и коллекторным токами Iк. Величина тангенса будет равна
Из уравнения (1.18.1) следует, что в общем случае величина сдвига фаз между эмиттерным и коллекторным токами будет определятся как . Сдвинув для удобства и на величину по временной оси, тем самым, совместив их. Будем наращивать частоту переменного сигнала или уменьшать период эмиттерного тока (см. рис. 1.18.1). При длительности эмиттерного импульса T/4 > "плоского" участка на коллекторном токе , уже не будет. При дальнейшем уменьшении периода эмиттерного импульса Т начнет уменьшаться амплитудное значение коллекторного тока, поскольку за это время инжектированные носители не успевают дойти до коллекторного перехода. На языке коэффициента передачи это соответствует возникновению частотной зависимости амплитудного значения коэффициента передачи .
15. Функция Эберса Молла.
16. Отрицательная обратная связь (ООС) в биполярном транзисторе.
Показательный пример использования отрицательной обратной связи — построение усилителя со стабильным коэффициентом усиления на основе операционного усилителя. Пусть дан некоторый ОУ с коэффициентом усиления порядка 106. На основе этого ОУ нужно построить усилитель со входным сопротивлением не менее 5 кОм и коэффициентом усиления 2. Для этого на инвертирующий вход ОУ ставится резистор с сопротивлением, чуть больше требующегося входного (допустим, 7 кОм), а в цепь обратной связи — резистор с номиналом в 2 раза больше. Аналитическая формула показывает, что такой способ построения усилителей является приближённым, однако в силу большой величины коэффициента усиления, погрешность от применённых допущений оказывается меньше, чем от неточности изготовления элементов. Обычно ООС позволяет добиться хороших параметров усилителя, однако это справедливо в общем случае только для усиления постоянного тока или низких частот. Поскольку с повышением частоты задержка, вносимая усилителем, начинает давать существенный фазовый сдвиг усиливаемого сигнала, то и ООС работает уже не в соответствии с расчётом. Если и далее повышать частоту, то когда задержка станет порядка полупериода сигнала (то есть порядка 180 градусов по фазе), то ООС превратится в ПОС, а усилитель — в генератор. Для предотвращения этого, цепь ООС должна делаться частотно-зависимой. В СВЧ усилителях обратная связь неприменима, поэтому стабилизировать усиление СВЧ каскадов весьма непросто. Однако, если нужно стабилизировать не усиление, а амплитуду (мощность) выходного сигнала, это легко реализовать в виде АРУ.
17. Усилительный каскад переменного тока на биполярных транзисторах.
|