КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Транзисторы с изолированным затвором (МДП-транзисторыСтр 1 из 2Следующая ⇒ Транзисторы с управляющим p-n переходом Рис. 1. Устройство полевого транзистора с управляющим p-n переходом
Полевой транзистор с управляющим p-n переходом — это полевой транзистор, затвор которого изолирован (то есть отделён в электрическом отношении) от канала p-n переходом, смещённым в обратном направлении.Такой транзистор имеет два невыпрямляющих контакта к области, по которой проходит управляемый ток основных носителей заряда, и один или два управляющих электронно-дырочных перехода, смещённых в обратном направлении (см. рис. 1). При изменении обратного напряжения на p-n переходе изменяется его толщина и, следовательно, толщина области, по которой проходит управляемый ток основных носителей заряда. Область, толщина и поперечное сечение которой управляется внешним напряжением на управляющем p-n переходе и по которой проходит управляемый ток основных носителей, называют каналом. Электрод, из которого в канал входят основные носители заряда, называют истоком. Электрод, через который из канала уходят основные носители заряда, называют стоком. Электрод, служащий для регулирования поперечного сечения канала, называют затвором.Электропроводность канала может быть как n-, так и p-типа. Поэтому по электропроводности канала различают полевые транзисторы с n-каналом и р-каналом. Все полярности напряжений смещения, подаваемых на электроды транзисторов с n- и с p-каналом, противоположны.Управление током стока, то есть током от внешнего относительно мощного источника питания в цепи нагрузки, происходит при изменении обратного напряжения на p-n переходе затвора (или на двух p-n переходах одновременно). В связи с малостью обратных токов мощность, необходимая для управления током стока и потребляемая от источника сигнала в цепи затвора, оказывается ничтожно малой. Поэтому полевой транзистор может обеспечить усиление электромагнитных колебаний как по мощности, так и по току и напряжению.Таким образом, полевой транзистор по принципу действия аналогичен вакуумному триоду. Исток в полевом транзисторе подобен катоду вакуумного триода, затвор — сетке, сток — аноду. Но при этом полевой транзистор существенно отличается от вакуумного триода. Во-первых, для работы полевого транзистора не требуется подогрева катода. Во-вторых, любую из функций истока и стока может выполнять каждый из этих электродов. В-третьих, полевые транзисторы могут быть сделаны как с n-каналом, так и с p-каналом, что позволяет удачно сочетать эти два типа полевых транзисторов в схемах.От биполярного транзистора полевой транзистор отличается, во-первых, принципом действия: в биполярном транзисторе управление выходным сигналом производится входным током, а в полевом транзисторе — входным напряжением или электрическим полем. Во-вторых, полевые транзисторы имеют значительно большие входные сопротивления, что связано с обратным смещением p-n-перехода затвора в рассматриваемом типе полевых транзисторов. В-третьих, полевые транзисторы могут обладать низким уровнем шума (особенно на низких частотах), так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда и канал полевого транзистора может быть отделён от поверхности полупроводникового кристалла. Процессы рекомбинации носителей в p-n переходе и в базе биполярного транзистора, а также генерационно-рекомбинационные процессы на поверхности кристалла полупроводника сопровождаются возникновением низкочастотных шумов Транзисторы с изолированным затвором (МДП-транзисторы Устройство полевого транзистора с изолированным затвором.Полевой транзистор с изолированным затвором — это полевой транзистор, затвор которого отделён в электрическом отношении от канала слоем диэлектрика.В кристалле полупроводника с относительно высоким удельным сопротивлением, который называют подложкой, созданы две сильнолегированные области с противоположным относительно подложки типом проводимости. На эти области нанесены металлические электроды — исток и сток. Расстояние между сильно легированными областями истока и стока может быть меньше микрона. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. Так как исходным полупроводником для полевых транзисторов обычно является кремний, то в качестве диэлектрика используется слой двуокиси кремния SiO2, выращенный на поверхности кристалла кремния путём высокотемпературного окисления. На слой диэлектрика нанесён металлический электрод — затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами.Входное сопротивление МДП-транзисторов может достигать 1010…1014 Ом (у полевых транзисторов с управляющим p-n-переходом 107…109), что является преимуществом при построении высокоточных устройств.Существуют две разновидности МДП-транзисторов: с индуцированным каналом и со встроенным каналом.В МДП-транзисторах с индуцированным каналом (рис. 2, а) проводящий канал между сильнолегированными областями истока и стока отсутствует и, следовательно, заметный ток стока появляется только при определённой полярности и при определённом значении напряжения на затворе относительно истока, которое называют пороговым напряжением (UЗИпор).В МДП-транзисторах со встроенным каналом (рис. 2, б) у поверхности полупроводника под затвором при нулевом напряжении на затворе относительно истока существует инверсный слой — канал, который соединяет исток со стоком.Изображённые на рис. 2 структуры полевых транзисторов с изолированным затвором имеют подложку с электропроводностью n-типа. Поэтому сильнолегированные области под истоком и стоком, а также индуцированный и встроенный канал имеют электропроводность p-типа. Если же аналогичные транзисторы созданы на подложке с электропроводностью p-типа, то канал у них будет иметь электропроводность n-типа МДП-транзисторы с индуцированным каналомПри напряжении на затворе относительно истока, равном нулю, и при наличии напряжения на стоке, — ток стока оказывается ничтожно малым. Он представляет собой обратный ток p-n перехода между подложкой и сильнолегированной областью стока. При отрицательном потенциале на затворе (для структуры, показанной на рис. 2, а) в результате проникновения электрического поля через диэлектрический слой в полупроводник при малых напряжениях на затворе (меньших UЗИпор) у поверхности полупроводника под затвором возникает обеднённый основными носителями слой эффект поля и область объёмного заряда, состоящая из ионизированных нескомпенсированных примесных атомов. При напряжениях на затворе, больших UЗИпор, у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом, соединяющим исток со стоком. Толщина и поперечное сечение канала будут изменяться с изменением напряжения на затворе, соответственно будет изменяться и ток стока, то есть ток в цепи нагрузки и относительно мощного источника питания. Так происходит управление током стока в полевом транзисторе с изолированным затвором и с индуцированным каналом.В связи с тем, что затвор отделён от подложки диэлектрическим слоем, ток в цепи затвора ничтожно мал, мала и мощность, потребляемая от источника сигнала в цепи затвора и необходимая для управления относительно большим током стока. Таким образом, МДП-транзистор с индуцированным каналом может производить усиление электромагнитных колебаний по напряжению и по мощности.Принцип усиления мощности в МДП-транзисторах можно рассматривать с точки зрения передачи носителями заряда энергии постоянного электрического поля (энергии источника питания в выходной цепи) переменному электрическому полю. В МДП-транзисторе до возникновения канала почти всё напряжение источника питания в цепи стока падало на полупроводнике между истоком и стоком, создавая относительно большую постоянную составляющую напряжённости электрического поля. Под действием напряжения на затворе в полупроводнике под затвором возникает канал, по которому от истока к стоку движутся носители заряда — дырки. Дырки, двигаясь по направлению постоянной составляющей электрического поля, разгоняются этим полем и их энергия увеличивается за счёт энергии источника питания, в цепи стока. Одновременно с возникновением канала и появлением в нём подвижных носителей заряда уменьшается напряжение на стоке, то есть мгновенное значение переменной составляющей электрического поля в канале направлено противоположно постоянной составляющей. Поэтому дырки тормозятся переменным электрическим полем, отдавая ему часть своей энергии.
Структурная схема неуправляемого тиристора (динистора) представлена на рисунке 1.48. Он состоит из четырех полупроводниковых областей с чередующейся примесной проводимостью. Представленная структура может рассматриваться как два включенных друг с другом транзистора (см. рисунок 1.48). При подаче напряжения в соответствии с примесной проводимостью крайних областей тиристора первый (эмиттерный) переход транзистора (n1-p1-n2) будет смещен в прямом направлении, второй – в обратном. То же происходит и со вторым транзистором (p2 – n2 – p1) транзистором. Ток каждого транзистора можно представить в виде: , где IP и IN – коллекторные токи соответствующих транзисторов; a1 и a2 – коэффициенты передачи токов эмиттера этих же транзисторов; IP_K0_и IN_K0 – обратные (тепловые) токи коллекторных переходов.Суммарный ток тиристора будет равен: При (a1+a2) @ 1, IН → ∞. С повышением прямого напряжения на тиристоре увеличиваются коэффициенты передачи токов эмиттера a1 и a2, что в определенный момент приводит к лавинообразному росту тока IН (коллекторный ток каждого транзистора является в свою очередь базовым током другого – имеет место, так называемая «положительная обратная связь»). Изменение полярности приложенного к тиристору напряжения приведет к смещению в обратном направлении двух эмиттерных переходов, в результате чего ВАХ повторяет обратную ветвь полупроводникового диода. В отличии от диодного триодный тиристор имеет дополнительный электрод, используемый для подачи тока управления в одну из баз импровизированных транзисторов (см. рисунок 1.49). В зависимости от месторасположения управляющего электрода различают тиристоры с анодным и катодным управлением. Наличие базового вывода позволяет влиять на момент начала лавинообразного нарастания тока (момент отпирания) тиристора и зависит от величины тока протекающего по электроду управления. Ток управления (IУ) даже у самых мощных тиристоров не превышает десятков мА, в то время как прямые токи доходят до 1кА и выше.Рабочая ветвь ВАХ диодного тиристора соответствует (см. рисунок 1.50) характеристике для IУ0 = 0. Увеличение IУ приводит к изменению ВАХ (кривые для IУ1 и IУ2). Управляемый тиристор работает последовательно с нагрузкой и совместная рабочая точка определяется на пересечении двух характеристик – нагрузи RН(одна из красных линий на рисунке 1.50) и тиристора (синяя линия для конкретного значения IУ).
Время лавинообразного отпирания тиристора составляет единицы микросекунд и необходимость тока управления определяется только этим временем отпирания, т.е. тиристором можно управлять коротким импульсом IУ достаточной амплитуды, после чего наличие тока управления необязательно – в открытом состоянии тиристор будет находиться вплоть до момента снижения прямого тока ниже установленного значения, которое называют током удержания IУД. Недостатком использования управляемого тиристора является то, что его невозможно выключить с помощью изменения тока управления. Для выключения тиристора используют подачу короткого импульса обратного напряжения (UАК < 0), искусственно создавая точку нулевого тока. Область использования тиристоров – управляемые выпрямители, инверторы (преобразователи постоянного тока в переменный), бесконтактные коммутаторы. На рисунке 1.51 представлена схема управляемого выпрямителя, где тиристор используется не только как выпрямитель, нои регулятор величины выпрямленного тока. В нагрузке RН, включенной последовательно с тиристором протекает ток тиристора. Когда тиристор закрыт – ток равен нулю и все напряжение источника UАК~ приложено к полупроводниковому прибору. В момент достаточной величины тока управления, который изменяется пропорционально анодному напряжению, тиристор открывается (его сопротивление резко падает почти до нуля) и напряжение источника падает на нагрузке, ток в которой определяется: .Диаграммы работы тиристора на нагрузку при переменном напряжении источника и разных значениях тока управления приведены на рисунке 1.52. Ток управления при необходимости изменяют путем корректировки величины сопротивления в цепи управления. Таким образом, в нагрузке протекает ток (IRН) одного направления, среднее значение амплитуды которого зависит от степени открытия тиристора (красная линия на рисунке 1.52). При выборе формы управления тиристором необходимо учитывать, что по мере нагрева полупроводника его ВАХ изменяется – момент опрокидывания с ростом температуры наступает раньше при неизменном токе управления, поэтому аналоговое регулирование тока нагрузки путем изменения амплитуды IУ имеют гистерезис ветвей роста и снижения напряжения на нагрузке. Для исключения явления гистерезиса в управлении работой тиристорного преобразователя используют фазовый метод, заключающийся в создании короткого импульса IУ достаточной амплитуды в заданный момент времени. Это полупроводниковые структуры способные коммутировать или управлять огромными токами (десятки - сотни ампер) и напряжениями (сотни вольт и более). Одна из таких функциональных групп была рассмотрена выше – это частично управляемые тиристоры и оптотиристоры. Классификация силовых электронных компонент в графической форме представлена на рисунке 1.54.
Поскольку силовые диоды не играют заметной роли в электронных устройствах и не имеют особенностей в конструкции, основное внимание в разделе будет посвящено полностью управляемым тиристорам, биполярным транзисторам с изолированным затвором (IGBT), МДП и SIT- транзисторам. Полностью управляемый тиристор в областях анода и катода состоит из множества полупроводниковых элементов, каждый из которых представляет собой часть отдельного тиристорного канала (см. рисунок 1.55). При этом каждый тиристорный канал оказывается включенным по отношению друг к другу параллельно. ВАХ GTO – тиристора не отличается от подобной характеристики обычного тиристора. Его особенность заключается в том, что путем подачи на электрод управления G тока обратной полярности можно выключить тиристор. Динамика процесса включения отличается от классической и состоит из времени задержки tЗАД и нарастания tНАР анодного тока, что в сумме и определяет время включения тиристора (см. диаграмму на рисунке 1.56): .
Особенностью БТИЗ является основной вертикальный канал, изготовить который без шунтирующего биполярного транзистора невозможно (так называемый МДП транзистор с каналом вертикального типа) и дополнительная область (на рисунке она выделена розовым цветом), создающая еще один биполярный транзистор противоположный по структуре первому (см. рисунок 1.58). Резистор RМОД – последовательное сопротивление основного канала. Его значение изменяется (модулируется) с величиной проходящего тока. Резистор RБ – активное сопротивление области базы T2. Величина RБ небольшая и потому держит шунтирующий паразитный транзистор Т2 в закрытом состоянии, что не оказывает существенного влияния на работу ПТ Т1. Достоинством IGBT является высокие коммутируемые напряжения (свыше 1кВ) и тока (свыше 100А), но частотный диапазон ниже, чем у мощных полевыхтранзисторов с вертикальным каналом. БТИЗ устойчив к короткому замыканию в цепи нагрузки – при своевременном отключении он восстанавливает свои свойства, что говорит о его высокой тепловой стабильности.
Стокозатворнную характеристику транзистора отличает протяженный линейный участок, что позволяет использовать их в оконечных каскадах усилителей мощности особенно в аппаратуре так называемого Hi – Fi (High Fidelity) типа. При переходе напряжения на затворе через ноль (смещение управляющего перехода в прямом направлении) транзистор переходит в биполярный режим работы, достоинством которого является малое прямое напряжение между истоком и стоком, при этом затвор, чей ток в данном случае становится значительным, выполняет роль базы.
|