Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Логические системы управления в АСУТП




Системы управления дискретными процессами.

Циклические и логические системы управления в АСУТП

В химической промышленности к дискретным относят периодические процессы, связанные с циклическим переключением операций и включением отдельных технологических аппаратов в определенной последовательности.

К ним относят такие процессы пуска и останова аппаратов непрерывного действия, а также процессы, связанные с защитой и блокировкой технологического оборудования.

Системы автоматической защиты предназначены для предотвращения аварий на производстве.

Системы автоматической блокировки служат для предотвращения неправильной последовательности включений и выключений машин, механизмов, аппаратов.

Для автоматизации дискретных процессов используют циклические и логические системы управления.

Циклические системы – в них управление процессом осуществляется по жесткой временной программе. Алгоритмом работы таких систем являются, как правило, циклограммы, а технической реализацией их осуществляется с применением логических микропроцессорных контроллеров или команды аппаратов работающих по жесткой временной программе.

Порядок работы циклических СУ задают в виде циклограммы, где по оси ординат условно показывают соответственно регулирующие органы, а по оси времени моменты их включения и отключения.

Время вкл/откл

Логические системы управления в АСУТП

Логические СУ предназначены для автоматизации процессов, продолжительность операций в которых, определяется самим процессом. Они обеспечивают передачу сигналов о заданной логической последовательности от измеренных преобразователей к РО, воздействующим на объект. Эти системы применяют тогда, когда возникает необходимость в определении оптимальной стратегии переключений технологических аппаратов в период проведения ТП. Такие системы обязательно должны иметь средства контроля, объективно определяющее начало и конец той или иной технологической операции. Математическим аппаратом систем является аппарат математической логики. Вначале рассмотрим самый простой пример решения задачи оптимального управления. Пусть имеем два технологических аппарата, два химических реактора.

В реакторах идет гетерогенная реакция с участием катализатора. Активность достаточно быстро падает и течение реакции замедляется. Задача заключается в том, чтобы обеспечить оптимальное переключение аппарата, работающего в стадии контактирования, когда в нем резко снизиться активность катализатора, в режим регенерации, а вместо него подключить в режим контактирования другой аппарат, который должен работать в этом режиме до тех пор, пока первый реактор не пройдет стадию регенерации.

Клапан 1,2 – обеспечивает подачу хим.сырья; 3,4 – обеспечивает вывод продукта из реактора, 5,6,7,8 – обеспечивает пуск в реактор и вывод из него рабочей среды по регенерации катализатора.

Для того, чтобы сформировать сигнал о неблагополучии в реакторе, т.е что скорость реакции замедляется и производительность реактора падает, необходима установка одного или нескольких приборов, которые могут объективно зафиксировать это состояние.

В данной схеме установлены два прибора качества (анализаторы). Информация с них подается на ЭВМ, на основе этой информации ЭВМ формирует некоторые функции прибыли. Продолжительность процесса контактирования может быть определена или по какому-то технологическому показателю (по мере осуществления процесса забивается катализатор и степень превращения на выходе из реактора снижается) или по какому-то косвенному показателю, например экономическому. Обозначим его как R1(τ ) и R2 (τ)

Постепенное старение катализатора, стохастический характер изменения свойств перерабатываемого сырья и колебания тепловых нагрузок приводит к тому, что экстремум этих функций меняет свое положение. В таких системах д.б. устройства для расчета целевых функций R1(τ ) и R2 (τ ).

Нам выгодно работать в режиме контактирования. ЭВМ на основе опроса каналов определяющих состояние и на основе расчета функций R (τ ) формирует в соответствии с количеством реакторов соответствующее количество сигналов –Хi , i= . В нашем случае это Х1 и Х2.

Пусть х1 и х2 –выходные сигналы с этих устройств. Они принимают значения, равные 0, когда

 

R1(τ ) ≤ R*1(τ )mах.

R2(τ ) ≤ R*2 (τ ) mах.

 

Эти значения равны = 1, при R1(τ )> R*1(τ )mах,τ > τ* опт

R2(τ )>R*2(τ )mах , τ > τ* опт

 

Причем х1=1 и х2=1 запоминаются до тех пор, пока соответствующий аппарат не пройдет стадию регенерации.

Пусть также y1 и y2 -- сигналы, по которым дается разрешение на работу аппаратов в режиме регенерации.

Сигнал y1=1, когда разрешается вывод на регенерацию 1-го аппарата.

Второй аппарат также начинает работать в режиме регенерации при выполнении условия y2=1.

По условию задачи , y1ожет принять значение =1, только при х1=1, т.е когда имеется сигнал готовности к регенерации первого аппарата, соответственно y2=1 может быть при условии х2=1.

 

Кроме того, должны удовлетворяться следующие требования. Если первый аппарат выводится на регенерацию раньше, чему соответствует y1=1,то второй аппарат блокируется, т.е условие y2=0, должно соблюдаться до тех пор, когда первый аппарат не пройдет регенерацию. Данное логическое соотношение можно записать в виде:

Аналогичное рассуждение для случая, когда раньше включается второй аппарат, приведет к выражению

Данный алгоритм реализует логическую задачу с памятью, которая находится в соответствии с принципом « кто раньше».

Проверим, как работает данный алгоритм при различных сочетаниях аргумента.

 

1) Пусть первым пришел сигнал готовности к регенерации первого аппарата,

х1=1.При этом в предшествующий момент времени

х2=0, y2=0 ( у2= 0× =0) , =0 , y1=1 (у1=1× =1)

В этом случае первый аппарат с сигналомy1=1получит разрешение на регенерацию, а второй аппарат будет продолжать работать.

 

2) Пусть вслед за первым аппаратом пришел сигнал готовности к регенерации второго аппарата, т.е х2=1.

В этой ситуации первый аппарат еще не прошел стадию регенерации и сигнал у1 продолжает оставаться =1 .

=0 , y2=0

Второй аппарат не получает разрешение на регенерацию, он встает в очередь.

 

3) Пусть первый аппарат прошел стадию регенерации

х1=0, y1=0, =1, y2=1.

Второй аппарат получает разрешение на регенерацию.

 

4) х1=1.Но при этом y2=1, =0, y1=0.

Следовательно, первый аппарат не получает разрешение на регенерацию, хотя ресурсы его уже исчерпаны, он встает в очередь.

Часто в одной нитке включенными оказываются не 2, а m аппаратов, один из которых в каждый момент времени находится в регенерации. Из работающих m аппаратов, сигнал готовности к регенерации может подать любой аппарат, например j-ый. По условию задачи, сигнал yj должен запретить включение всех остальных m-1 аппаратов в регенерацию.

 

Для осуществления этого требования, сигнал yj должен быть связан логическим соотношением « кто раньше» с сигналами включения остальных аппаратов.

Связи сигналов для j-го аппарата выражаются с помощью следующих функций:

Связь j-го с 1-ым:

Связь j-го с 2-ым:

 

Связь j-го с m-ым: (А)

По условию задания, для включения j-го аппарата на регенерацию, необходимо, чтобы сигнал готовности от этого аппарата пришел раньше всех остальных аппаратов.

В этих соотношениях верхний индекс при -y- указывает с аппаратом, какого номера осуществляется связь « кто раньше».

 

Нижний индекс при -y- показывает номер аппарата, на который подается данный управляющий сигнал.

Из записанных соотношений видно, что сигнал

 

yji =1; i=1,2,3…… j-1, j+1….m

 

Если обозначить выходной управляющий сигнал для j- го аппарата символом Zj, то согласно изложенной стратегии переключений связь Zj с параметрами yji , где i=1,2,3…… j-1, j+1….m , можно представить следующим логическим соотношением

 

Zj = yj 1× yj2… ×yj j-1 ×yj j+1 ×……yjm

 

Это уравнение совместно с уравнением связи (А) определяют алгоритм переключения для случая -m - аппаратов.

 

Литература: Кафаров « Методы кибернетики»


Поделиться:

Дата добавления: 2015-09-14; просмотров: 870; Мы поможем в написании вашей работы!; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Особенности логических элементов, реализуемых в составе БИС | Логическое программирование
lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты