КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Теоретичні відомості. Якщо матеріальна точка рухається за криволінійною траєкторією, то вектор її лінійної швидкості збігається з дотичною до траєкторіїЯкщо матеріальна точка рухається за криволінійною траєкторією, то вектор її лінійної швидкості збігається з дотичною до траєкторії. При цьому вектор швидкості може змінюватись в загальному випадку як за модулем, так і за напрямком. Вектор тангенціального прискорення визначається швидкістю зміни вектора швидкості за модулем, вектор нормального (доцентрового) прискорення - швидкістю зміни вектора швидкості за напрямком.
Напрямок вектора тангенціального прискорення в кожній точці траєкторії (див. рис.1, точка M) збігається з напрямком вектора повної швидкості, а його модуль визначається першою похідною від швидкості за часом: . Вектор нормального прискорення спрямований до центра кривизни траєкторії під кутом 900 до вектора повної швидкості. Його модуль , де v – повна швидкість в точці траєкторії M, R – радіус кривизни траєкторії в цій точці. Вектори тангенціального і нормального прискорення є взаємно перпендикулярними складовими повного прискорення , яке дорівнює їх векторній (геометричній) сумі: . Модуль вектора повного прискорення . При кидані деякого тіла в горизонтальному напрямку (вздовж осі ox) його рух обумовлюється рухом за інерцією в горизонтальному напрямку і рухом під дією сили тяжіння – в вертикальному. Згідно принципу незалежного складання рухів ці два рухи дають результуючий рух за криволінійною траєкторією. Його описує рівняння руху в двох координатах: ox: , (1) oy: , (2) де - початкова швидкість вздовж осі (початкова швидкість в вертикальному напрямку дорівнює нулю), H – початкова висота, g – прискорення Земного тяжіння. Ми нехтуємо силою опору повітря і тому вважаємо рух вздовж осі ox рівномірним, тобто горизонтальна складова швидкості завжди vГ = v0x = v0. Цей рух і рух по вертикалі синхронізовані у часі, але є незалежними. Диференціювання по часу другого рівняння дає вираз для величини вертикальної складової швидкості vВ = vy: . (3) Рівняння (1-1) - (1-3) дозволяють з відомих початкових умов визначити кінематичні характеристики руху матеріальної точки в будь-який момент часу (це є пряма задача кінематики), наприклад, для моменту падіння маємо: ; ; (4) В даній лабораторній роботі відомими з експерименту є величини H i L, що дозволяє розрахувати інші відповідні кінематичні характеристики.
|