![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
УМОВНА ЕНТРОПІЯ І ЕНТРОПІЯ ОБ'ЄДНАННЯ ⇐ ПредыдущаяСтр 2 из 2
Поняття умовної ентропії в теорії інформації використовується при визначенні взаємозалежності[3] між символами кодованого алфавіту, для визначення втрат при передачі інформації по каналах зв'язку, при обчисленні ентропії об'єднання. У всіх випадках при обчисленніі умовної ентропії в тому або іншому вигляді використовується умовна ймовірність. Якщо при передачі n повідомлень символ А з'явився m разів, символ В з'явився l разів, а символ А разом з символом В – до к разів, то ймовірність появи символу А
Якщо відома умовна ймовірність, то можна легко визначити і ймовірність сумісної появи символів А і В, використовуючи вирази (7)
Від класичного виразу (4) формула умовної ентропії відрізняється тим, що ймовірності в ній ймовірності - умовні:
де індекс i вибраний для характеристики довільного стану джерела повідомлення А, індекс j вибраний для характеристики довільного стану адресата В. Розрізняють поняття частинної і загальної|спільної| умовної ентропії. Вирази (9) і (10) є частинними умовними ентропіями. Загальна умовна ентропія повідомлення В щодо повідомлення А характеризує кількість інформації, що міститься в будь-якому символі алфавіту, і визначається усереднюванням по всіх символах, тобто по всіх станах з урахуванням ймовірності появи кожного із станів, і дорівнює сумі ймовірності появи символів алфавіту на невизначеність, яка залишається після того, як адресат прийняв сигнал
Вираз (11) є загальним виразом для визначення кількості інформації на один символ повідомлення для випадку нерівномірних і взаємонезалежних| символів. Оскільки У загальному випадку, якщо ми передаємо m сигналів А і чекаємо отримати m сигналів В, вплив завад в каналі зв'язку повністю описується канальною матри-цею, яку наведено нижче:
Ймовірності, які розташовані по діагоналі, визначають правильний прийом, останні - помилковий. Значення цифр, що заповнюють колонки канальної матриці, зазвичай зменшуються при віддаленні від головної діагоналі, а при повній відсутності перешкод всі, окрім цифр, розташованих на головній діагоналі, дорівнюють нулю. Якщо описувати канал зв'язку з боку джерела повідомлень, то проходження даного виду сигналу в даному каналі зв'язку описується розподілом умовної ймовірності виду
Сума ймовірностей розподілу (13) завжди рівна 1. Втрати інформації, які припадають на долю сигналу
Підсумовування проводиться по j, оскільки i-ий стан (у даному випадки перший) залишається сталим. Щоб врахувати втрати при передачі всіх сигналів по даному каналу зв'язку, слід підсумувати всі частинні умовні ентропії, тобто провести подвійне підсумовування по i та j. При цьому у разі рівноймовірних появ сигналів на виході джерела повідомлень
(на m ділимо, оскільки ентропія є невизначеність на один символ). У разі нерівноймовірної появи символів джерела повідомлень слід врахувати ймовірність появи кожного символу, помноживши на неї відповідну частинну умовну ентропію. При цьому загальна умовна ентропія
Оскільки то для обчислення загальної умовної ентропії нарівні з виразом (16) може бути використане наступний вираз
Якщо ми досліджуємо канал зв'язку з боку приймача повідомлень, то з отриманням сигналу припускаємо, що був надісланий якійсь із сигналів. При цьому канальна матриця матиме вигляд
В цьому випадку одиниці повинні дорівнювати сумі умовної ймовірності не по рядках, а по стовпцях канальної матриці
Частинна умовна ентропія
а загальна умовна ентропія
Якщо задані канальна матриця виду і навпаки, якщо задані ймовірність виду Ентропія об'єднання використовується для обчислення ентропії сумісної появи статистичних залежних повідомлень. Наприклад, передаючи сто разів цифру 5 по каналу зв'язку з перешкодами, відмітимо, що цифра 5 була прийнята 90 разів, цифра 6 – 8 разів і цифра 4 – 2 рази. Невизначеність виникнення комбінацій вигляду 5 – 4, 5 – 5, 5 – 6 при передачі цифри 5 може бути описана за допомогою ентропії об'єднання.
Ентропія об'єднання і умовна ентропія зв'язані між собою наступними спів-відношеннями: Ентропія об'єднання може бути підрахована за допомогою матриці вигляду Така матриця володіє чудовою властивістю:
Підсумовування проводиться по i та j, оскільки для того, щоб знайти безумовну вірогідність, необхідно підсумовувати їх по одній координаті (маючи на увазі матричне представлення ймовірності, а для знаходження Н підсумовування проводиться по іншій координаті. Умовні ймовірність виду Кількість інформації на символ повідомлення, переданого по каналу зв'язку, в якому вплив перешкод описується за допомогою ентропії об'єднання, підрахову-ється таким чином
[1] Первинний алфавіт складений з m1 символів (якісних ознак), за допомогою яких записано передаване повідомлення. Вторинний алфавіт складається з m2 символів, за допомогою яких повідомлення трансформується в код. [2] Строго|суворий| кажучи, об'єму|обсягу| інформації не існує. В цей термін вкладаємо те, що звикли|звикалися| під цим мати на увазі, - кількість елементарних символів в прийнятому (вторинному|повторному|) повідомленні. [3] Суть взаємозалежності символів букв алфавіту полягає в тому, що вірогідність появи i-ої букви в будь-якому місці повідомлення залежить від того, які букви стоять перед нею і після неї, і відрізнятиметься від безумовної вірогідності відомою із статистичних властивостей даного алфавіту.
|