Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Вычисление линейных невязок по осям координат




Читайте также:
  1. II 6.2. Вычисление
  2. L – класс линейных функций.
  3. А) Координаты, импульс и энергия могут быть заданы лишь приблизительно
  4. Автоматические регуляторы. Определение закона регулирования регулятора (на примере САР теплообменника). Классификация линейных регуляторов. Нелинейный регулятор (пример)
  5. Анализ работы нелинейных систем по методу А.А.Вавилова
  6. Антикризові заходи за координаторами та рівнями застосування
  7. АЯ И 2АЯ ЭКВАТОРИАЛЬНАЯ СИС-МА КООРДИНАТ.
  8. В координатах дебит–депрессия
  9. В ЛОКАЛЬНОЙ СИСТЕМЕ КООРДИНАТ
  10. В.В какой координатной четверти пересекаются прямые и ?A) В четвёртой 1 страница

Находят суммы вычисленных приращений

И теоретические суммы приращений

ΣΔхткон–хнач

ΣΔуткон–унач

Линейные невязки по осям координат

fx= Σ∆хф– Σ∆хт

fу= Σ∆уф–Σ∆ут

Вычисление абсолютной и относительной невязок теодолитного хода

fабс =

Определяют относительную линейную невязку fотн теодолитного хода: fотн=

где Р – периметр хода.

Допустимое значение относительной невязки не должно превышать погрешности линейных измерений . Если это условие нарушено, то длины линий перемеряют, а если выполняется, то вычисляют поправки в вычисления координат:

Поправки округляют до 0.01 мм и выписывают их со своими знаками над соответствующими приращениям ∆х и ∆у.

Сумма поправок должна равняться невязке с обратным знаком:

ΣδΔx=–fx

ΣδΔy=–fy

Вычисляют исправленные приращения координат и записывают результаты в ведомость:

∆хиспр= ∆хвыч + δΔх

∆уиспр= ∆увыч + δΔу

Для контроля определяют суммы исправленных приращений координат, которые должны быть равны теоретическим суммам приращений:

∆хиспр= Σхт

∆уиспр= Σут


Дата добавления: 2015-02-09; просмотров: 18; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2020 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты