КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Множественное выравниваниеСтр 1 из 4Следующая ⇒ Множественное выравнивание – это такой способ написания нескольких последовательностей друг под другом (может быть, с пропусками в каких-то позициях в разных последовательностях) , чтобы в каждом столбце стояли гомологичные позиции. Для этой задачи тоже есть «золотой стандарт». Это выравнивание, которое бы получилось, если бы мы выровняли друг под другом последовательности, которые имеют одинаковую пространственную структуру. То есть две экспериментально установленные пространственные структуры белка сопоставляем и отмечаем, какие аминокислотные остатки друг под другом встали (эти остатки соответствуют гомологичным позициям). Это – биологически обоснованное выравнивание. Возникает задача - найти способ (построить алгоритм и определить параметры), который выравнивает последовательности "золотого стандарта" (то есть последовательности, для которых пространственная структура известно) правильно. Если такой алгоритм построен, то есть надежда, что он выровняет последовательности с неизвестной пространственной структурой тоже правильно. Для решения задачи множественного выравнивания можно попробовать написать многомерную матрицу и построить методом динамического программирования с просмотром многомерной матрицы. Тогда количество вершин будет порядка Ln , где L – длина, а n – количество последовательностей. Так как типичное количество последовательностей в семействе белков сотни, то 300 аминокислот дадут 300100 – это очень много, этот алгоритм для множественного выравнивания не подходит. Тогда придумали метод прогрессивного выравнивания. Зная расстояния между любой парой последовательностей, мы можем построить выравнивание, определить вес выравнивания, и построить какое-то бинарное дерево. Затем мы обходим это дерево, последовательно проводя парные выравнивания наиболее близких последовательностей. Объединяем, получаем выравнивание. Соединяем суперпоследовательности, получаем следующее выравнивание. В конце концов получаем выравнивание в корне. Такое постепенное построение выравнивание решает задачу, которую мы не можем сформулировать математически. В биоинформатике очень часто нельзя построить математическую формулировку задачи, которую мы решаем. Поэтому формулировка задачи, которую решает алгоритм BLAST, выглядит так: мы находим то, что находит программа BLAST. Также мы не можем сказать, что мы оптимизируем при множественном выравнивании. Одна и та же биологическая задача может приводить к разным математическим постановкам одной и той же задачи. Есть примеры, когда одна и та же задача может быть построена так, что она будет математически решаемой или математически не решаемой. Есть класс задач, для которых не существует хороших алгоритмов. Но при построении множественных выравниваний мы решаем с помощью данного алгоритма, без формулировки математической задачи. Дальше идет задача
|