Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Частота альтернативного сплайсинга




Сначала альтернативный сплайсинг был обнаружен у вирусов, считалось, что это экзотика. До 1998 г. считалось, что только около 6% генов человека имеют альтернативный сплайсинг. Рассчитали, что для того, чтобы обеспечить наблюдаемое разнообразие белков, в геноме человека должно было быть 80 – 100 тысяч генов. В 1998 году было показано, что около половины генов человека имеют альтернативный сплайсинг. За счет альтернативного сплайсинга число генов может быть меньше числа кодируемых ими белков, так как с одного гена может образовываться несколько белков.

Как было написано в какой-то газете "Многолетними усилиями ученых количество генов человека было сокращено со 100 тысяч до 25". Действительно, по последним оценкам в геноме человека около 25-30 тысяч генов. Оценка количества белков не изменилась - разных белков около 80-100 тысяч. Разнообразие белков обеспечивается альтернативным сплайсингом. Например, в одних клетках белок должен быть в цитоплазме, в других - такой же белок в мембране, в третьих – транспортироваться наружу. И это легко делается не за счет наличия разных генов для каждого случая, а за счет альтернативного сплайсинга , который цепляет на N-конец разные сигналы, при том что "рабочая часть" белка остается одной и той же, и одна изоформа белка размещается в мембране, другая изоформа белка – в цитоплазме, и т.д.

Сейчас общеизвестно, что не менее 50% генов человека альтернативно сплайсируется.

Альтернативный сплайсинг бывает разных типов (галочками показано, как вырезаются экзоны):

На этом рисунке показаны кассетный экзон (вставляемый в одни изоформы и отсутствующий в других), альтернативный акцептор, альтернативный донор, далее интрон может либо вырезаться, либо не вырезаться.

Теперь вернемся к вопросу о человеке и мыши. Человек и мышь биологически очень похожи. Белки похожи – уровень сходства аминокислотных последовательностей 80%, также похожа значительная часть некодирующих областей генома. Практически у всех генов одинаково устроена экзон-интронная структура, для 99% генов экзонная структура одинакова. Только 1% генов уникален у каждого генома, остальные гены имеют гомологи в другом геноме. Интересен тот факт, что при таком относительно невысоком уровне различий человека от мыши внешне отличают легко. А два вида мухи дрозофилы вряд ли кто-то различит на глаз, хотя генетически они различаются сильнее, чем человек и мышь.

Возникает вопрос: Если геномы одинаковы, то может быть, и белки одинаковы? Непонятно, чем же человек отличается от мыши. Одинаково ли устроен альтернативный сплайсинг у мыши и человека?

Наивный подход для ответа на этот вопрос такой: возьмем весь набор альтернативного сплайсинга мыши и человека и сравним его. Этот подход неправильный, так как при исследовании альтернативного сплайсинга мы здесь имеем дело с EST. Если у человека EST просеквенировано несколько миллионов штук, то у мыши сделано всего несколько тысяч, поэтому там, где мы можем увидеть альтернативный сплайсинг у человека, можем ничего не увидеть у мыши, так как базы данных еще не совсем полные. Поэтому такое сравнение даст нам неправильный ответ.

Правильный подход в данной ситуации заключается в следующем: мы на основе имеющихся данных на человеческой ДНК строим мРНК, соответствующую белку, и затем этот белок проецируем на мышиный геном. Если оказывается, что для этого белка (или его части) нет кодирующих последовательностей в мышиной ДНК, то это значит, что тот экзон, который есть у человека, отсутствует в геноме у мыши.

Возьмем человеческие и мышиные гены, происходящие от общего предкового гена Возьмем такие пары генов-ортологов, сделаем сравнение. Мы получим некоторую выборку, среди которым 50% генов человека имеют такие изоформы, которых нет у мыши, то же самое и с мышью.

Сравним пары генов человек-мышь. Например, ген бета-глобина человека и мыши – такие гены, разошедшиеся в процессе эволюционного видообразования, называются ортологами. Выборку мы взяли не очень большую, в ней присутствовали гены, имеющие альтернативный спалйсинг. И оказалось, что у 52% человеческих генов есть такие экзоны, которых нет у мыши. И половина мышиных генов имеет такие изоформы, которых нет у человека.

Но нам могут сказать – вы использовали EST, это неточные данные. Если мы возьмем полноразмерные мРНК (а данные по ним гораздо точнее, хотя общее количество сиквенсов по ним меньше), и проведем с ними ту же процедуру, то окажется, что примерно треть генов человека имеет изоформы, которые в геноме мыши не кодируются, отсутствуют, и также в геноме человека отсутствуют мышиные экзоны.

А вот конкретные примеры: сверху изображены ДНК и ее изоформы у человека, а снизу – то же у мыши. Например, для белка р53, который участвует в регуляции клеточных процессов (раковое перерождение, апоптоз). Видно, что у мыши есть изоформа, которая теряет экзон, порождая стоп в другом месте.

Представленные данные показывают, что альтернативный сплайсинг – явление весьма распространенное, и что мышь сильно отличается от человека по альтернативному сплайсингу. Можно сделать и эволюционное предположение. По-видимому, альтернативный сплайсинг допускает большую свободу для создания новых белков, или изменения функций существующих белков, и в этом и состоит его связь с эволюцией.

 


Поделиться:

Дата добавления: 2015-02-09; просмотров: 142; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты