КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Задача 1. Однородная балка длины и веса Р удерживается в равновесии нитью ВС и шарниром АОднородная балка длины и веса Р удерживается в равновесии нитью ВС и шарниром А. Найти натяжение нити и реакцию шарнира А, если (рис. 7). Реакция нити ВС направлена по нити, а реакция шарнира А определяется в соответствии с теоремой о трех силах: если свободное твердое тело находится в равновесии под действием трех непараллельных сил, лежащих в одной плоскости, то линии действия этих сил пересекаются в одной точке. Заменив действие связей их реакциями, мы можем перейти от реальной схемы нагружения к расчетной (рис. 7, а). Учитывая, что сила Р приложена в середине балки и следовательно точка К (точка пересечения сил), делит отрезок ВС пополам, определим углы в полученной фигуре. Решение данной задачи может быть проведено двумя методами: геометрическим и аналитическим.
Рис. 7 Рис. 7, а Геометрический метод. Из сил, действующих на тело, строим силовой треугольник, который должен быть замкнутым, т.к. под действием этих сил тело находится в равновесии (рис. 7, б). Для этого откладываем силы по известным направлениям, в любом выбранном масштабе. Таким образом, задача определения опорных реакций сводится к задаче решения полученного силового треугольника. Для решения воспользуемся теоремой синусов и составляем следующее соотношение:
откуда получаем Рис. 7, б Аналитический метод. Для решения задачи составляются уравнения равновесия в виде суммы проекций всех сил на оси координат. Направления осей показаны на рис.7, а.
(1) (2) Из первого уравнения получаем RC =RA. Из второго находим .
|