Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


ЛАБОРАТОРНАЯ РАБОТА №2




ИЗУЧЕНИЕ ЗАКОНОВ КОЛЕБАТЕЛЬНОГО ДВИЖЕНИЕ МАТЕМАТИЧЕСКОГО МАЯТНИКА И ОПРЕДЕЛЕНИЕ УСКОРЕНИЯ СИЛЫ ТЯЖЕСТИ.

 

ЦЕЛЬ РАБОТЫ: изучить законы колебательного движения , определить ускорения силы тяжести.

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ: математический маятник, секундомер, набор шариков, линейка.

 

1. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ.

 

Движение, при котором тело или система тел через равные промежутки времени отклоняется от положения равновесия и вновь возвращается к нему, называются периодическими колебаниями.

Колебания, при которых изменение колеблющейся величины со временем происходит по закону синуса или косинуса, называются гармоническими.

Уравнение гармонического колебания записывается в виде:

 

 

Гармонические колебания характеризуются следующими параметрами: амплитудой А, периодом Т, частотой υ, фазой φ, круговой частотой ω.

А – амплитуда колебания – это наибольшее смещение от положения равновесия. Амплитуда измеряется в единицах длины ( м, см и т. д.).

Т – период колебания – это время, в течении которого совершается одно полное колебание. Период измеряется в секундах.

υ – Частота колебания – это число колебаний, совершаемых в единицу времени. Измеряется в Герцах.

φ – фаза колебания. Фаза определяет положение колеблющейся точки в данный момент времени. В системе СИ фаза измеряется в радианах.

ω – круговая частота измеряется рад/с

Всякое колебательное движение совершается под действием переменной силы. В случае гармонического колебания эта сила пропорциональна смещения и направлена против смещения:

,

 

где К – коэффициент пропорциональности, зависящий от массы тела и круговой частоты.

Примером гармонического колебания может служить колебательной движение математического маятника.

Математическим маятником называют материальную точку, подвешенную на невесомой и недеформируемой нити.

Небольшой тяжелый шарик, подвешенный на тонкой нити (нерастяжимой), является хорошей моделью математического маятника.

Рис.1

Пусть математический маятник длиной l (рис. 1) отклонен от положения равновесия ОВ на малый угол φ ≤ . На шарик действует сила тяжести , направленная вертикально вниз, и сила упругости нити , направленная вдоль нити. Равнодействующая этих сил F будет направлена по касательной к дуге АВ и равна:

 

 

При малых углах φ можно записать:

где Х – дуговое смещение маятника от положения равновесия. Тогда получим:

 

Знак минус указывает на то, что сила F направлена против смещения Х.

Итак, при малых углах отклонения математический маятник совершает гармонические колебания. Период колебаний математического маятника определяется формулой Гюйгенса:

 

где - длина маятника, т. е. расстояние от точки подвеса до центра тяжести маятника.

Из последней формулы видно, что период колебания математического маятника зависит лишь от длины маятника и ускорения силы тяжести и не зависит от амплитуды колебания и от массы маятника. Зная период колебания математического маятника и его длину, можно определить ускорение силы тяжести по формуле:

Ускорением силы тяжести называется то ускорение, которое приобретает тело под действием силы притяжения его к земле.

На основании второго закона Ньютона и закона всемирного тяготения можно записать:

где γ – гравитационная постоянная, равная

М – масса Земли, равна ,

R – расстояние до центра Земли, равное ,

Т. к. Земля не имеет форму правильного шара, то на различных широтах имеет разное значение, а, следовательно, и ускорение силы тяжести на разных широтах будет разное: на экваторе ; на полюсе ; на средней широте .

 


Поделиться:

Дата добавления: 2015-02-09; просмотров: 133; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты