Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Опыт Кавендиша и причуды гравиметрии.




 

Между тем, проблема решается легко и кардинально, если допустить, что в посреднике, обеспечивающем тяготение, никаких явлений переноса нет. И не только потому, что этот посредник производит на каждый кусочек вещества силовое воздействие, которое зависит лишь от локальных параметров посредника – в том месте, где этот кусочек вещества находится. А ещё и потому, что этот посредник, как ни странно это звучит, порождается вовсе не массивными телами: он существует независимо от массивных тел. Кусочки вещества не порождают тяготение, они лишь испытывают предписанные «здесь и сейчас» силовые воздействия: приобретают ускорение свободного падения, если есть куда падать, или деформируются, если падать некуда. Тогда тяготение действует вообще без задержки во времени, что находится в согласии с вышеназванным нижним ограничением на скорость его действия.

Тезис о том, что тяготение порождается отнюдь не массивными телами, несовместим с идеей о том, что любые два кусочка вещества притягиваются друг к другу потому, что каждый их них порождает собственное тяготение. Но что поделаешь – мы расскажем об огромном количестве опытных данных, которые вопиют о том, что вещество не имеет никакого отношения к производству тяготения. Вещество не притягивает, оно лишь подчиняется тяготению.

К чему же оно тяготеет? Такой вопрос – «К чему?» – несколько некорректен. Правильнее спросить: «В каком направлении?» Отвечаем: «Вниз по местной вертикали». Эти-то местные вертикали посредник и создаёт! Предписывая собственной энергии (массе) каждой элементарной частицы вещества быть не постоянной, а зависеть от местоположения этой частицы в пространстве. Там, где задан «склон» для собственных энергий, малое тело испытывает силовое воздействие, направленное «вниз» – т.е. туда, где собственные энергии меньше. Например, в пределах планетарной сферы тяготения эти силовые воздействия направлены к её центру. Они не зависят от количества вещества, уже свалившегося к центру и теперь образующего планету. Казалось бы, малое тело падает на планету потому, что его притягивает вещество планеты. Отнюдь: при тех же параметрах сферы тяготения, малое тело падало бы к её центру точно так же, как если бы планеты там вообще не было. Ускорение свободного падения совершенно не зависит от массы «силового центра»: оно зависит только от крутизны «склона» для собственных энергий! Кстати, малые-то тела не имеют собственного тяготения. Всех его обладателей в Солнечной системе можно пересчитать по пальцам: это Солнце, планеты, Луна, и, возможно, Титан. Что же касается других спутников планет, а также комет и астероидов, то, несмотря на интенсивные поиски признаков их собственного тяготения, такие признаки не обнаруживаются. Наоборот, обнаруживается нечто противоположное.

 

Мы к этому ещё вернёмся, а пока остановимся на неотложном вопросе. Вон физики уже хохочут: «Как это – кусочки вещества не притягивают? Как это – малые тела не имеют собственного тяготения? Похоже, автор не знает про опыт Кавендиша, где обнаружилось притяжение грузиков не к планетарному силовому центру, а к лабораторным болваночкам!» Знаем мы про опыт Кавендиша. Сейчас вы, весельчаки, увидите, что там обнаружилось.

Кавендиш использовал крутильные весы. Это горизонтальное коромысло с двумя грузиками на концах, подвешенное за свой центр на тонкой струне и тщательно сбалансированное. Коромысло может поворачиваться в горизонтальной плоскости, закручивая упругий подвес в ту или иную сторону, поэтому существует равновесное положение коромысла. Как пишут в популярных изданиях, Кавендиш приблизил к грузикам коромысла пару болванок с противоположных сторон, и коромысло повернулось на небольшой угол, при котором момент сил притяжения грузиков к болванкам уравновесился упругой реакцией подвеса на кручение.

Это шутка, конечно. Если всё было так просто, то отчего бы лабораторную установку, сделанную по схеме Кавендиша, не иметь в каждой общеобразовательной школе? Пусть уже ребятишки знали бы на опыте, что камешки для рогатки притягиваются не только к Земле, но и друг к другу. Что мешает ребятишкам прикоснуться к фундаментальному эксперименту? Может, Кавендиш использовал какие-то высокотехнологические секреты? Да нет, его установка (XVII век) не мудренее, чем современные коромысловые аналитические весы, которые есть, наверное, в каждой химической лаборатории. Может, требуются технические нюансы установки Кавендиша? Тоже нет проблем: сгоняйте в Англию и посетите музей, где эта установка хранится. Вот коромыслице, вот подвешены на медных стержнях свинцовые чушки: покрутишь вон тот блок, чушки переместятся, приблизятся к грузикам – и притягивать начнут. И всё оно сделано скромненько, в деревянном корпусе. Смотрите, перенимайте! Всё лучшее – детям! А может иметь в каждой школе деревянный ящик с немагнитными болванками на стержнях и струнках – это слишком разорительно? Ну, хорошо, пусть бы такие ящики были хотя бы на физических факультетах вузов! Пусть студенты делали бы лабораторные работы, после которых на всю жизнь знали бы точно, что две болваночки друг друга притягивают, притягивают, притягивают!

Но нет таких полезных ящиков даже в вузах. Похоже, обнаруживать притяжение двух болваночек – это не студенческого ума дело. Студенты результат Кавендиша проверяли бы, а егоподтверждать надо. Такое ответственное дело требует особых навыков, и за него непозволительно браться абы кому. А в особенности – доморощенным умельцам! Если у этих талантов-самородков зудит в одном месте, пусть на здоровье пытаются повторить опыт Майкельсона-Морли. Там, действительно, свет клином сошёлся. А досточтимого сэра Кавендиша пусть не трогают!

 

Да почему же? А потому что тронь – и сразу выяснится, что дело-то было вовсе не в гравитационном притяжении грузиков к болванкам. Есть веские основания полагать, что «секрет успеха» Кавендиша был обусловлен микровибрациями, действие которых на механические системы потрясающее – и в прямом, и в переносном смыслах. Откуда досточтимый сэр мог знать, что его крутильные весы под воздействием микровибраций ведут себя существенно иначе, чем при отсутствии оных? Чтобы понять, в чём заключается эта разница, следует иметь в виду, что высокочувствительную колебательную систему трудно успокоить: она совершает свободные колебания, у которых период длинный, да и затухают они очень медленно. Замучаешься ждать, пока они совсем затухнут. А малейший микросейсм – чихнёт экспериментатор или пукнет – и опять всё сначала. Но Кавендиш и не ждал, когда колебания затухнут. Идея заключалась в том, что среднее положение при колебаниях должно было сместиться к болванкам после того, как их передвинут из дальней позиции в ближнюю. Но пусть пока эти болванки находятся в дальней позиции. Смотрите внимательно, что произойдёт, если при прохождении коромыслом среднего положения «включить» микровибрации; например, у кронштейна, к которому прикреплён подвес коромысла. Под действием микровибраций эффективная жёсткость подвеса уменьшается: струна как бы размягчается. И произойдёт вот что: коромысло отклонится от среднего положения на существенно большую величину, чем оно отклонялось при свободных колебаниях без микровибраций. И если это увеличенное отклонение не превысит некоторую критическую величину, то будет возможен ещё один впечатляющий эффект. А именно, если микровибрации отключатся или затухнут до того, как коромысло дойдёт до максимального отклонения, то возобновятся свободные колебания с прежней амплитудой, но с соответственно смещённым средним положением! Причём, этот эффект будет обратим: новым «включением» микровибраций в подходящий момент можно будет вернуть колебания к их исходному среднему положению! Таким образом, имевшее место поведение крутильных весов вполне могло быть обусловлено всего лишь подходящим добавлением микровибраций к крутильным колебаниям коромысла. Причём, судя по использованной Кавендишем методике, микровибрации он добавлял весьма подходяще.

Надо, всё-таки, сказать, откуда же они брались. Это совсем просто. Кронштейн, к которому была подвешена чувствительная крутильная система, был приделан к боковой стене того же самого деревянного корпуса, к крыше которого крепилась поворотная подвеска двух болванок, по 158 килограммов каждая. Как ни смазывай поворотную подвеску свиным или гусиным жиром, в процессе изменения позиции болванок весь корпус будет скрипеть и подрагивать. И, соответственно, подёргивать кронштейн с крутильной системой. Запомним: каждое перемещение болванок – это возбуждение микровибраций.

А теперь – самое интересное: когда эти болванки перемещать. Пусть вначале они находятся в дальней позиции. Если ожидается, что в результате их перемещения в ближнюю позицию коромысло довернётся к новому среднему положению, то спрашивается: когда следует делать смену позиций, чтобы доворот коромысла проявился в наиболее чистом виде? Правильно, когда коромысло проходит нынешнее среднее положение и движется в сторону ожидаемого доворота. Так и делалось. И понеслось оно, вибрирующее коромысло, в нужную сторону! Можно возразить: далеко оно не уйдёт, ведь микровибрации довольно быстро затухнут. Это действительно так. Но Кавендиш не ограничивался единственной сменой позиции болванок! Вот цитата из его статьи: «…в этом опыте притяжение грузов отклоняло коромысло с деления 11.5 до деления 25.8 [это средние положения], так что если бы не было предпринято никаких мер, то импульс, приобретённый при этом, перенёс бы коромысло к делению 40 и поэтому заставил бы шарики удариться о кожух. Чтобы предотвратить этот удар, после того, как коромысло приближалось к делению 15, я возвращал грузы в среднюю [дальнюю] позицию и оставлял их там до того момента, когда коромысло подходило близко к крайней точке своего колебания, и тогда снова сдвигал грузы в положительную [ближнюю] позицию». Здесь для нас важно не объяснение Кавендиша, почему он так делал (странное оно, это объяснение). Для нас важно то, что он делал. Смотрите, как здорово получалось: вскоре после начала движения коромысла к новому среднему положению, второй раз возбуждались микровибрации – возвратом болванок в дальнюю позицию. Эти два «включения» микровибраций и давали результирующее новое среднее положение коромысла. При третьем перемещении болванок – вновь в ближнюю позицию – микровибрации пропадали впустую, поскольку это перемещение делалось при крайнем отклонении коромысла, т.е. при нулевой скорости его движения. В итоге этой нехитрой трёхходовой комбинации оказывалось, что болванки находятся в ближней позиции, а коромысло колеблется, довернувшись к ним – как будто и впрямь из-за гравитационного притяжения. Да только сторонники концепции притяжения лабораторных болваночек не объяснят вам, какая же нечистая сила несла коромысло аж три четверти пути к новому среднему положению – в то время, когда болванки находились в дальней позиции и по логике эксперимента «не притягивали». А ведь смещение к новому среднему положению превышало амплитуду свободных колебаний в семь раз!

Остаётся добавить, что по совершенно аналогичной трёхходовой методе производился и возврат коромысла в прежнее среднее положение. Ловкость рук и никакого мошенничества!

 

«Но ведь Кавендиш получил результат измерений, и этот результат правдоподобен!» – скажут нам. Да, это верно. Но верно и то, что перед тем, как получить этот результат, Кавендиш долго переделывал и настраивал доставшуюся ему установку. Не потому ли, что поначалу на ней неправдоподобные результаты получались? А то, что Кавендиш знал заранее, какой результат правдоподобен – это никаких сомнений не вызывает. Об этом позаботился Ньютон, который дал умозрительную оценку средней плотности Земли: «так как обыкновенные верхние части Земли примерно вдвое плотнее воды, немного ниже, в рудниках, оказываются примерно втрое, вчетверо и даже в пять раз более тяжелыми, правдоподобно, что всё количество вещества Земли в пять или шесть раз более того, как если бы оно всё состояло из воды». Вот он – первоисточник той самой «правдоподобности». В дальнейшем экспериментаторы получали самые разные результаты, но сообщали, конечно, только о тех, которые получались «правдоподобные». Мало-помалу это зашло так далеко, что стали поговаривать, будто Ньютон «с гениальной прозорливостью назвал, практически, современное значение средней плотности Земли». Простите, а это современное значение – оно откуда взялось? Разве это результат беспристрастного измерения? Отнюдь: это очередной «правдоподобный» результат. Если кто-то в этом сомневается, пусть заглянёт в статьи последователей Кавендиша, которые тоже выискивали признаки притяжения лабораторных болваночек. Многие из этих статей труднодоступны; но тех, до которых нам удалось добраться, особенно современных, объединяет одна характерная черта. По приведённым в них материалам невозможно проследить происхождение конечных цифр. Так что, когда нас уверяют, что исключительно важный для науки результат Кавендиша неоднократно проверялся и перепроверялся его последователями, у нас просто дух захватывает: славная компания подобралась!

 

Между прочим, то, что результат Кавендиша исключительно важен, сообразили лишь недавно. И теперь на каждом углу кричат, что Кавендиш был первым, кто измерил гравитационную постоянную – тот самый коэффициент пропорциональности, который входит в формулу закона всемирного тяготения. Но это, опять же, шутка. Кавендиш и слыхом не слыхивал о гравитационной постоянной, а свой опыт он называл определением средней плотности Земли (или её массы) через отношение сил притяжения грузика к Земле и к болванке с известной массой. Причём, в те времена без гравитационной постоянной успешно обходились даже специалисты по небесной механике: достаточно было знать отношения гравитационных сил у небесных тел.

Смотрите: по закону всемирного тяготения ускорение свободного падения малого пробного тела пропорционально произведению гравитационной постоянной на массу притягивающего тела. Для расчёта космических движений важно знать лишь эти произведения, и всё. Если, допустим, значение гравитационной постоянной было бы принято в два раза большим, а массы притягивающих тел были бы приняты в два раза меньшими, это ничуть не отразилось бы на движениях космических тел. Вот и получалось: произведение гравитационной постоянной на массу Земли знали хорошо, а чему равны эти сомножители по отдельности – было, в общем-то, не принципиально. Но ситуация резко изменилась, когда гравитационную постоянную причислили к фундаментальным физическим константам. Потому что наворотили кучу космологических и астрофизических теорий, где гравитационная постоянная играла ключевую роль. Вот тут-то значение гравитационной постоянной оказалось очень даже востребованным. На его основе можно было делать выбор между конкурирующими теориями, которые расходились по разным животрепещущим вопросам. Например: сколько длился первый этап Большого Взрыва – три микросекунды или четыре? Или: Вселенная в её нынешнем состоянии – она уже «остывшая» или ещё «горячая»? Или: какова должна быть масса новорожденной звезды, чтобы она превратилась в чёрную дыру не раньше чем через десять миллиардов лет? Уже сама по себе возможность первичной разбраковки космологических и астрофизических теорий придавала этим теориям хоть какое-то наукоподобие! Для начала и это было неплохо. Но далее разбраковка набрала такие обороты, что в итоге привела к полному ужасу: оказалось, что будь гравитационная постоянная хоть капельку больше или меньше – и Вселенная просто не смогла бы существовать! Подумать только, как же мы должны быть благодарны судьбе за то, что у нас такие башковитые теоретики! А кто подарил теоретикам такую замечательную возможность – показать свою башковитость? Кто сделал первый опыт, из которого оказалось возможно выудить такое нужное значение гравитационной постоянной? А вон кто: скромняга Генри!

 

Да, давно мы подозревали, что с опытом Кавендиша что-то не так. Ибо трудно поверить в то, что в лабораторных условиях удаётся обнаружить собственное тяготение у чушек в полтораста килограммов, а в полевых условиях, при проведении гравиметрических измерений, не удаётся обнаружить собственного тяготения у триллионов тонн поверхностного вещества Земли. Даже сто раз обнаруженное притяжение лабораторных болваночек померкло бы перед теми неизменно оглушительными результатами, которые даёт гравиметрия.

Вот как она это делает. Вблизи поверхности Земли сила тяготения, действующая на маленькое пробное тело, равна, как полагают, сумме сил его притяжения ко всем маленьким кусочкам, на которые мысленно разбивают Землю. Если бы Земля была однородным шаром, то результат суммирования зависел бы лишь от расстояния до центра этого шара. Но в том-то и дело, что Земля не является однородным шаром – а это и предоставляет нам возможность убедиться в том, что её поверхностное вещество не обладает притягивающим действием. И прежде всего обратим внимание на самую большую, прямо-таки глобальную, неоднородность: Земля является не шаром, а эллипсоидом, будучи сплюснута с полюсов, так что она имеет так называемую «экваториальную выпуклость». Экваториальный радиус Земли примерно на 21 км больше полярного, и, из-за одной только этой причины, сила тяжести на экваторе должна быть несколько меньше, чем на полюсе. Если прикинуть увеличение экваториального радиуса при условии, что результирующее уменьшение силы тяжести обеспечивается только центробежными силами (из-за собственного вращения Земли), то получается почти 11 км. Причём, если шар превращается в сплюснутый эллипсоид при сохранении своего объёма, то увеличение экваториального радиуса на 11 км вызовет уменьшение полярного радиуса на те же 11 км. Результирующая разность составит 22 км – т.е., величину, близкую к фактической. Это радует; но обратим внимание, что мы не принимали в расчёт притяжение экваториальной выпуклости, которое оказывает дополнительное противодействие центробежным силам. Чем больше средняя плотность вещества в экваториальной выпуклости, тем сильнее должно быть это противодействие, и тем меньше должно быть результирующе равновесное увеличение экваториального радиуса. Расчёты показывают, что, при средней плотности в четыре тонны на кубометр, увеличение экваториального радиуса составило бы не 11 км, а всего-то 7 км. Если, конечно, экваториальная выпуклость притягивала бы. Но если это увеличение составляет лишь немногим меньше 11 км, то… не нужно иметь семь пядей во лбу, чтобы сообразить: экваториальная выпуклость не притягивает! Против фактов не попрёшь! Впрочем, находятся оригиналы, которые, несмотря ни на что, прут против. Этих весёлых ребят называют баллистиками. Они учитывают влияние экваториальной выпуклости на движение искусственных спутников Земли!

 

Дальше – больше. Кроме глобальной неоднородности Земли, связанной с экваториальной выпуклостью, есть ведь у неё и более мелкие неоднородности – в распределении плотности вещества в поверхностном слое. Там есть залежи плотных, или, наоборот, рыхлых пород. Есть огромные горные массивы, где плотность пород составляет около трёх тонн на кубометр. Есть океаны, где плотность воды составляет одну тонну на кубометр на всей толще, даже на глубине в 11 километров. А есть лежащие ниже уровня моря долины, в объёме которых плотность вещества равна плотности воздуха. По идее о всемирном тяготении, все эти неоднородности поверхностной плотности должны сказываться на показаниях гравиметрических инструментов. Простейшим из них является отвес: он должен уклоняться в ту сторону, с которой сильнее притяжение поверхностных масс. Так, рядом с мощным горным массивом, отвес должен уклоняться к этому массиву, а на берегу океана он должен уклоняться от океана. Эти уклонения должны быть вполне заметны, например, при сравнении географической широты пункта, полученной двумя способами: астрономическим (с привязкой к отвесной линии) и геодезическим (без такой привязки). Обратите внимание: лишь по теории отвес должен уклоняться, а эти уклонения должны быть заметны… Но на практике оказывается, что никто никому не должен: вышеназванные уклонения отвеса ни вблизи горных массивов, ни вблизи океанов, ни там и сям сразу не обнаруживаются. Самый большой шок по этому поводу испытали англичане, которые в середине XIX века проводили изыскания уклонений отвеса южнее Гималаев, а получили шиш. Вообще-то, шиши получались везде, но южно-гималайский случай примечателен тем, что уклонения там ожидались рекордные, ведь севернее находился самый мощный горный массив, а южнее был Индийский океан, так что и шиш получился рекордный.

 

На эти странности с отвесами можно было бы махнуть рукой. Но у запасливых гравиметристов есть ещё приборы похитрее: гравиметры, которыми измеряют силу тяжести. В результаты этих измерений, конечно, вносят расчётные поправки на поверхностные неоднородности. Рассуждают так: если бы этих неоднородностей не было, то на уровне моря гравитационная сила была бы везде одинакова… Но, раз уж неоднородности есть, то, вооружённые законом всемирного тяготения, будем рассчитывать их вклад и вычитать его из результатов измерений… Тогда при правильных расчётах-учётах будем получать ту самую, везде одинаковую гравитационную силу на уровне моря!.. Представляете, сколько было бы радости, если всё получалось бы именно так?! Увы, на практике всё совершенно иначе. Если продраться сквозь терминологические и методологические дебри, которые специально нагромоздили для запутывания непосвящённых, то фактическая картина оказывается вот какой. После внесения в результат измерения поправки на поверхностные неоднородности итоговый результат отличается от той самой величины, везде одинаковой на уровне моря, как раз на значение внесённой поправки. То есть, если поправки на поверхностные неоднородности не вносить, то чистые измерения как раз и дают ту самую гравитационную силу, везде одинаковую на уровне моря. Проще всего это объяснить так: поверхностные неоднородности, хотя и существуют, не оказывают никакого воздействия на гравиметрические инструменты!

 

«Но это нас не устраивает, – прикидывали теоретики, – ведь любые два кусочка вещества… притягиваются друг к другу… с силой…» – ну, и так далее. Задача поначалу казалась неподъёмной: как такое может быть, что неоднородности на приборы действуют, а приборы их не замечают? Долго ли, коротко ли, но эту задачу решили, предложив остроумную гипотезу об изостазии. На общепонятном языке термин «изостазия» означает, что под поверхностными неоднородностями распределения масс находятся неоднородности противоположного знака, которые в точности компенсируют действие первых. Причём – повсеместно. Так, под горным массивом просто обязаны находиться залежи рыхлых пород. Ошибки недопустимы. Тысяча тонн меньше – недобор! Тысяча тонн больше – перебор!.. Ну, а под океанами обязаны залегать породы очень плотные. Океаны – они, похоже, только над плотными породами разливаться и способны. И, опять же, разливаются они не абы как: чем больше глубина океана, тем мощнее компенсирующие массы. Представляете, какая концентрация масс обязана быть под Марианской впадиной, чтобы обеспечивать изостазию в её районе? Жуть!

Вы, наверное, сейчас качаете головой и думаете, что мы напраслину несём, что изостазия – это какая-то шутка. Ничуть: учёные мужи говорят об изостазии с очень серьёзным выраженьем на лице. Не сорваться на хохот им помогает учение о том, что изостазия формируется за огромные промежутки времени, сравнимые с геологическими эпохами. Считается, что на таких промежутках времени даже твёрдые породы обладают некоторой текучестью. Вот, якобы за миллиарды лет и выдавливают они друг друга: плотные рыхлых, а рыхлые плотных, формируя изостазию. И ведь не придерёшься: кто же располагает геоморфологическими и гравиметрическими данными за миллиарды лет? Впрочем, бывают же случаи, когда весьма сильные перераспределения поверхностных масс происходят за сроки, ничтожные по геологическим меркам. Например, это случается при катастрофических землетрясениях, когда за несколько минут ландшафт изменяется до неузнаваемости. Или при извержении подводного вулкана, когда за несколько суток наращивается подводная гора или даже новый остров. Или при разработке месторождений полезных ископаемых, когда за несколько лет из карьера выгребают и увозят миллионы тонн породы. Уж тут-то изостазия установиться не успеет, и гравиметрические инструменты, кажется, должны реагировать на эти изменения? Но – ничуть не бывало! Правда, об этом помалкивают. Кому нужны нездоровые научные сенсации? Подавай сенсации здоровые – вроде той, что астрономы пронаблюдали, как «чёрная дыра пожирает звезду», а в качестве доказательства представили видеоклип, состряпанный средствами компьютерной анимации. Или вроде того, как сейчас лихо составляются гравиметрические карты планет и даже астероидов. Очень это полезное дело – сплавить гравиметрические изыскания подальше от Земли. А то на Земле с ними так нахлебались, что и вспоминать стыдно. Была ведь мощная кампания по применению гравиметрических приборов вариометров для разведки полезных ископаемых. В некоторых случаях вариометры, действительно, указывали направление, в котором находились искомые залежи. Но эти случаи, в полном согласии с теорией вероятностей, происходили из-за того, что если прибор указывает направление совершенно случайно, то рано или поздно он укажет его правильно. Поэтому разработчики месторождений, конечно, принимали к сведению гравиметрические разведданные, а проходку-то вели по данным сейсмических и электромагнитных методов. Но, несмотря ни на что, идея оказалась невероятно живуча: до сих пор разные организации предлагают простакам услуги по гравиметрической разведке. Простаков хватает: мало кто знает, зачем понадобилась гипотеза об изостазии.

Напомним: она понадобилась, чтобы избежать оглушительного вывода о том, что неоднородности в распределении масс не оказывают воздействия на гравиметрические приборы. Если вышеизложенные факты из практики так и не убедили кого-то в том, что гипотеза об изостазии – это нелепость, то приведём ещё простенькое теоретическое соображение. Если в некотором регионе действительно имела бы место изостазия, обнуляющая влияние неоднородностей масс при измерениях силы тяжести, то тогда в этом регионе не имела бы место изостазия, обнуляющая влияние неоднородностей масс при наблюдениях уклонений отвеса. И наоборот. Дело в том, что никакое распределение заглублённых масс не могло бы скомпенсировать сразу и вертикальные, и горизонтальные силовые возмущения от поверхностных неоднородностей. Но ведь «изостатический эффект» повсеместно наблюдается и с помощью гравиметров, и с помощью отвесов! Значит, дело здесь вовсе не в компенсирующих распределениях масс. Следует либо придумать вместо гипотезы об изостазии другую спасительную гипотезу поприличнее либо признать-таки, что неоднородности в распределении масс не влияют на показания гравиметрических приборов.

 

Но что означало бы такое признание? Да то и означало бы, что тяготение порождается не веществом, не массами. Что вещество Земли, которое мы попираем своими стопами, собственного тяготения не имеет. Что нам только кажется, будто это самое вещество притягивает, пока оно входит в состав планеты Земля. Которая потому и является планетой, что удерживается в центре планетарной сферы тяготения. Которая и обеспечивает «притяженье Земли».

 

 


Поделиться:

Дата добавления: 2015-02-10; просмотров: 194; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты