Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Quot;Понимание" текста на естественном языке




Многие процессы информационной деятельности: поиск инфор­мации, ее отбор, аналитико-синтетическая переработка, распро­стра­нение – все это процессы, связанные с чтением, понимани­ем (из­влечением смысла) и формулированием текста на естест­венном языке. Вот почему автоматизация этих процессов занима­ет важное место при разработке новых информационных техноло­гий. Впервые инфор­ма­ционные работники вплотную столкнулись с этой проблемой, когда в начале 50-х годов начались интенсив­ные эксперименты по машинному переводу. По этому поводу суще­ствуют разные мнения, о чем гово­рилось в лекции об информационных системах.

Моя позиция заключается в том, что адекватный перевод текстов с одного естественного языка на другой – задача, не имеющая однозначного решения. Всегда можно получить несколь­ко разных переводов одного и того же текста, в отношении которых допустимо говорить, что они достаточно близки к ориги­налу и стилистически корректны, причем степень того и другого не поддается измерению. Подтверждение этой мысли можно найти, если рассматривать эти переводы в диахронии, т. е. на протяже­нии некоторого времени. Оригинал художественного произведения всегда остается неизменным, а перевод быстро устаревает и ну­ждается в обновлении. А раз так, то и формализовать эту зада­чу для ее машинного решения можно лишь в зависимости от формализованности оригинального текста.

Обсуждая возможность адекватного перевода, полезно пред­ставить мысленно некоторую шкалу, на которой расположены разные типы текстов различной степени переводимости. На левом краю шкалы находятся поэтические тексты, в отношении которых термин "перевод" применяется условно, поскольку здесь речь идет о переложении поэтических образов, т. е. о сочинении но­вой поэзии. Продвигаясь по шкале вправо, мы последовательно встретимся с художественной прозой, научными и деловыми бу­магами, личной и ведомственной перепиской. Наконец, на пра­вом краю шкалы мы найдем некоторые типы текстов, однозначно передающихся из одного естественного языка в другой. Это различного рода юридические формулы (включая патентные), номен­клатурные перечни, транскрибируемые или транслитерируемые на­звания и имена. Очевидно, что возможность автоматизации пере­вода и вообще переработки текста будет возрастать по этой шка­ле слева направо.

Нас, в данном случае, интересуют те типы текстов, которые занимают довольно большое пространство в центре шкалы и кото­рые по меткому выражению покойного академика А. П. Ершова называют "деловой прозой". Он считал, что деловая проза отражает производственные отно­шения людей и является таким фрагментом естественного языка, который может быть "воспринят" компьютером.

Это убеждение он основывал на том, что данные отношения людей более строго регламентированы, чем другие, что деловая проза используется в модельных ситуациях, которые ведут к ее формализации. "Сти­хийно реализуемая, – писал он, – но властно диктуемая сутью де­ла потребность обеспечить быстрое и точное взаимопонимание наградила деловую прозу жесткими средствами выражения, эко­номичностью и другими полезными для человека и машины свой­ствами". Ясно, что большая часть публицистики, научных и ад­министративных документов написана деловой прозой.

В последние десятилетия успехи лингвистики и логики во мно­гом продвинули наше понимание сложностей машинного перевода, а достижения электронной техники сделали возможными практиче­ские системы, которые работают в промышленном режиме (обычно с предварительной подготовкой оригинального текста и последу­ющим редактированием машинного перевода человеком).

Но все же камнем преткновения автоматизированной обработки текста, ко­торая лежит в основе диалога человека с компьютером на есте­ственном языке, является необходимость для понимания этого текста владеть определенными знаниями экстралингвистической (т. е. не содержащейся в тексте) информацией и логическим мыш­лением (т. е. способностью к логическому выводу и правдоподоб­ным рассуждениям).

Мы уже говорили, что пятое поколение вычислительных машин, с внедрением которых связывали новые революционные изменения в информационной технологии, авторы проекта представляли как компьютеры, ведущие диалог на естественном языке. Многие лин­гвисты сомневаются в правомерности такой формулировки. Не вхо­дя слишком глубоко в существо проблемы, попытаемся вникнуть в представления специалистов о тех видах лингвистического ана­лиза, которые, собственно, и являются машинным "пониманием" естественного языка. Одна из первых трудностей заключается в неоднозначности многих его выражений, даже когда речь идет о языке деловой прозы.

Выделяют пять типов такой неоднозначности: лексическую, структурную, "глубинную", семантическую и прагматическую.

Лексическая неоднозначность возникает из-за полисемии боль­шого числа слов, включая специальные термины. Нам удается устранять эту неоднозначность на уровне человеческого интел­лекта, так как, зная контекст, всегда понимаешь, идет ли речь о ключе гаечном, от двери или том, который бьет из-под земли. При информационном поиске нам помогает в этом тезау­рус, где слова с разными значениями маркируются. Однако для различения этих значений в машине часто приходится прибегать к трудоемким (и не всегда дающим правильный результат) ста­тистическим процедурам.

Структурная неоднозначность – это, прежде всего, возмож­ность разного синтаксического членения предложения. Напри­мер, фразу "Наблюдения над языком маленьких детей" можно по­нять двояко: кто-то наблюдает за языком детей или дети ведут наблюдения над языком, в зависимости от того, относится ли слово "детей" к слову "язык" или к слову "наблюдения".

Неод­нозначность на уровне глубинной структуры содержится во фра­зе "Этот текст улучшить нельзя": либо потому, что он совер­шенен, либо потому, что безнадежно плох (примеры Ю. Д. Апресяна). Сравнивая две фразы "Каша готова к обеду" и "Цыплята готовы к обеду", мы усматриваем двусмыслен­ность второй из них, поскольку знаем, что цыплят можно и кормить и есть.

Семантическая неоднозначность в речи часто возникает из-за незнания ситуации. Вам говорят: "Купите автомобиль", и это может означать, что вы выбираете между автомобилем и мо­тоциклом, а может быть просто не знаете, куда потратить день­ги. "Человек упал, разбил окно, повредил себе руку" – все эти действия могли быть и нечаянными и намеренными. В зависимости от этого перевод фразы на другой язык и представление ее в ма­шине будут разными.

Прагматическая неоднозначность иллюстрируется фразой "Он уронил карандаш на стол и сломал его". Для человеческого опыта в ней нет неясности, поскольку мы пони­маем, что сломался карандаш, но машине это не очевидно. При переводе на другие языки "карандаш" и "стол" могут ока­заться словами разного грамматического рода (например, в ис­панском и французском первое мужского рода, а второе женско­го), и это окажется существенным.

Для иллюстрации лингвистического и логического анализа, необходимого при машинном «понимании» языка, воспользуемся моделью американского филолога Т. Винограда (Стэнфордский университет),на идеях которого основывается наше изложение. Реализация этой модели (рис. 14 ) требует сложных компьютерных программ баз данных и баз знаний, содержащих различные словари и правила. Предположим, что в машину введена фраза: Технологии будут развиваться по законам, которые мы поняли очень давно. Если она введена с голоса, то для нее должен быть выполнен фонетический анализ, если же вводится письменный текст (с клавиатуры или сканера), то программа начинается с морфологического анализа. Целью первого является распознавание и идентификация фонем, целью второго – установление основных форм слов и их флексий. На третьем этапе проводится лексический анализ, в результате которого образуется последовательность слов, соотнесенных с частями речи и их морфологическими характеристиками (число, падеж и т. п.). На четвертом этапе осуществляется синтаксический анализ фразы – грамматический разбор предложения, – который дает син­такси­ческую ее структуру (на рисунке она показана в виде дерева). Однако эта поверхностная структура не всегда однозначна, как мы уже убедились на примерах. Поэтому требуется еще анализ глубинной структуры (на рисунке не показанный).

Дальнейшие этапы машинного понимания текста переводят его синтаксическую структуру в логическую, которая позволяет применить процедуры логического вывода и рассуждений. Существуют различные формы семантических анализаторов для кодирования смысла языковых выражений. В данной модели используется исчисление предикатов.

После семантического анализа логическая структура предложения записывается цепочкой логических символов, которые могут быть прочитаны следующим образом:

Существуют такие x, y, z, t0, t1, t2,

что x есть технология,

y есть закон,

z есть произносящий фразу, который понял y в момент t2 ,

t0 есть момент произнесения,

t1 наступит после момента произнесения t0 ,

x развивается по y в момент t1 ,

t2 был задолго до t0 .

В ходе прагматического анализа определяется, в частности, что именно известно о переменных. Например, x – связанная квантором переменная. Она утверждает существование чего-то, но не указывает на определенный объект. Другими словами, технологии в данном случае это технологии вообще, а не какие-либо конкретные технологии. Точно так же переменная y есть неопределенный объект, задаваемый контекстом. Переменная z тоже остается не полностью определенной, поскольку местоимение мы может означать авторов высказывания, авторов и читателей, профессионалов данной области, вообще людей данного поколения. Целью машинного понимания языка является возможность диа­ло­га с машиной, в ходе которого компьютер мог бы давать логически осмысленные ответы на вопросы пользователя или же преобразовывать команды в определенные действия, учитывающие реальность. Эту задачу решает последний этап анализа, обозначенный на рис. 14 как «Рассуждения».



Каким образом, например, машина, воспринявшая нашу фразу, будет отвечать на вопрос: «Понимаем ли мы законы, по которым будет развиваться реферирование?» Для того, чтобы ответить на этот вопрос, компьютер должен знать, что реферирование есть процесс, относящийся к информационной технологии. Такое знание можно изобразить формулой исчисления предикатов: «Все, что есть реферирование, есть технология».

Есть и другие достаточно эффективные способы введения знаний в машину, такие как семантические сети, фреймы. Можно, например, ввести в машину семантическую сеть, в которой все виды технологий, включая и информационную, и все их разновидности будут связаны определенными отношениями (род–вид, часть–целое и т. п.). По такой сети можно автоматически определить, что реферирование есть часть, или вернее, один из процессов информационной технологии. Таким обра­зом, в данной ситуации компьютер сможет дать правильный ответ на заданный ему вопрос.

Однако трудность реального представления знаний в машине заключается в многообразии конкретных ситуаций, от ко­торых зависит понимание человеком текстов на естественном языке. В нашем примере из контекста нельзя понять, что означает выражение «очень давно», хотя информационные работники знают, что понимание некоторых законов информационной технологии пришло благодаря интенсивным исследованиям научных коммуникаций в середине 60‑х гг. ХХ в.

Подобным же образом и выражение «будут развиваться» означает не столько будущее время, сколько продолженное действие. Можно привести много других примеров, когда фраза на естественном языке, вполне понятная человеку в конкретной ситуации, требует специальных приемов интерпретации для ее машинного понимания.

Во многих научных коллективах разрабатываются методы перевода с естественного языка на язык математической логики. Они необходимы для глубокого семантического анализа во многих автоматизи­рованных информационных системах.

В проведении исследований важное место занимает анализатор, осуществляющий перевод синтаксического «дерева» в формулы инфор­мационно‑логического языка. На каждом шаге его работы исходная синтаксическая структура приближается к логической формуле при помощи трансформаций‑разверток до тех пор, пока формула не будет выражать смысл фразы. При этом, если исходная фраза неоднозначна, система в режиме диалога предлагает пользователю уточнить, какой из найденных машиной вариантов понимания он имел в виду.

Если подытожить сказанное, то суть проблемы заключается в том, что никакая, даже самая совершенная машина не может «понимать» текст на естественном языке так, как его понимает человек. Но она может однозначно воспринимать формулы математической логики. Поэтому задача формализации текста состоит в том, чтобы научиться устранять неопределенность и многозначность текстов на естественном языке при их переводе на формальный язык логики.

Разумеется, это один из многих путей, которым исследователи пытаются обучить компьютер пониманию естественного языка.



Поделиться:

Дата добавления: 2014-11-13; просмотров: 370; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты