КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Микропроцессоры типа CISC. Большинство современных ПК типа IBM PC используют МП типа CISC, выпускаемые многими фирмами: Intel, AMDБольшинство современных ПК типа IBM PC используют МП типа CISC, выпускаемые многими фирмами: Intel, AMD, Cyrix, IBM и т. д. Законодателем «мод» здесь выступает Intel, но ей «на пятки» наступает AMD, в последние годы создавшая МП по некоторым параметрам лучше «интеловских». Все же пока МП фирмы Intel имеют большее распространение; характеристики некоторых из них приведены в табл. Таблица.Характеристики некоторых CISC МП
Условные обозначения в столбце «Состав команд»: «ММХ +» означает, что имеется несколько дополнительных 32-битовых инструкций группы SSE (Streaming SIMD Extention). В столбце кэш символ F у кэш-памяти уровня L2 означает, что память работает на частоте процессора; обозначение F/2 — на половинной частоте процессора. Пояснения к таблице: □ число элементов — это количество элементарных полупроводниковых переходов, размещенное в интегральной схеме МП. Технология обычно характеризуется размером элемента в микронах (микронная технология). □ микропроцессоры 80486DX и выше имеют встроенный математический сопроцессор, могут работать с умножением внутренней частоты. С увеличенной частотой работают только внутренние схемы МП, все внешние по отношению к МП схемы, в том числе расположенные и на системной плате, работают с обычной частотой; □ у МП 80286 и выше конвейерное выполнение команд — это одновременное выполнение разных тактов последовательных команд в разных частях МП при непосредственной передаче результатов из одной части МП в другую, увеличивает эффективное быстродействие ПК в 2-5 раз; □ у МП 80286 и выше есть возможность работы в вычислительной сети; □ у МП 80286 и выше имеется возможность многозадачной работы (многопрограммность) и сопутствующая ей защита памяти. Современные микропроцессоры имеют два режима работы: реальный (однозадачный, Real Address Mode), в котором возможно выполнение только одной программы и непосредственно адресоваться могут только 1024 + 64 Кбайт основной памяти компьютера, а остальная память (расширенная) доступна лишь при подключении специальных драйверов; защищенный (многозадачный, Protected Virtual Address Mode), обеспечивающий выполнение сразу нескольких программ, непосредственную адресацию и прямой доступ (без дополнительных драйверов) к расширенной основной памяти. Предоставляется непосредственный доступ к памяти емкостью 16 Мбайт для МП 286; 4 Гбайт для процессоров 386, 486, Celeron; 100 Гбайт для МП Pentium Xeon и 64 Гбайт для остальных процессоров Pentium, а при страничной организации памяти — к 16 Тбайт виртуальной памяти для каждой задачи. В этом режиме осуществляется автоматическое распределение памяти между выполняемыми программами и соответствующая ее защита от обращений со стороны чужих программ. Защищенный режим поддерживается операционными системами Windows, OS/2, UNIX и т. д. □ в МП 80386 и выше встроена поддержка системы виртуальных машин. Система виртуальных машин является дальнейшим развитием режима многозадачной работы, при котором каждая задача может выполняться под управлением своей операционной системы, то есть практически в одном МП моделируется как бы несколько компьютеров, работающих параллельно и имеющих разные операционные системы; □ у МП 80486 и выше имеется поддержка кэш-памяти; □ у МП 80486 и выше имеются RISC-элементы, позволяющие выполнять короткие операции за 1 такт.
Микропроцессоры 80586 (Р5) более известны по их товарной марке Pentium, которая запатентована фирмой Intel (МП 80586 других фирм имеют иные обозначения: К5 у фирмы AMD, Ml у фирмы Cyrix и т. д.). МП шестого поколения 80686 (Р6), торговая марка Pentium Pro, имеют более высокую производительность благодаря наличию «динамического исполнения» (dynamic execution). Это означает: - наличие многоступенчатой суперконвейерной структуры (superpipelining), - наличие предсказания ветвлений программы при условных передачах управления (multiple branch prediction) - исполнение команд по предполагаемому пути ветвления (speculative execution). В программах решения многих задач содержится большое число условных передач управления. Если процессор может заранее предсказывать направление перехода (ветвления), то производительность его работы значительно повысится за счет оптимизации загрузки вычислительных конвейеров. Если путь ветвления предсказан неверно, процессор должен сбросить полученные результаты, очистить конвейеры и загрузить нужные команды заново, что требует достаточно большого числа тактов. В процессоре Pentium Pro вероятность правильного предсказания 90%, против 80% у МП Pentium. МП Pentium ММХ (ММХ — MultiMedia eXtention) и Pentium II модернизированы для работы в мультимедийной технологии. В них появилась качественно новая технология: начали внедряться инструкции SIMD (Single Instruction Multiply Data), в которых одно и то же действие совершается над многими данными. Более дешевый вариант Pentium II – Celeron (с отсутствующим либо урезанным до 128 Кбайт кэшем 2-го уровня). В МП Pentium III присутствует новый блок 128-разрядных регистров, что позволило осуществить расширение набора SIMD-инструкций, ориентированных на форматы данных с плавающей запятой — SSE (Streaming SIMD Extensions). Увеличен кэш 2-го уровня. Pentium IIIXeon — процессоры, позиционированные для серверов. В Pentium 4 улучшена система «динамического исполнения». Динамическое исполнение позволяет процессору предсказывать порядок выполнения инструкций при помощи технологии множественного предсказания ветвлений, которая прогнозирует прохождение программы по нескольким ветвям. Это оказывается возможным, поскольку в процессе исполнения инструкции процессор просматривает программу на несколько шагов вперед. Технология анализа потока данных позволяет проанализировать программу и составить ожидаемую последовательность исполнения инструкций независимо от порядка их следования в тексте программы. И, наконец, опережающее выполнение повышает скорость работы программы за счет выполнения нескольких инструкций одновременно, по мере их поступления в ожидаемой последовательности — то есть по предположению (интеллектуально). Поскольку выполнение инструкций происходит на основе предсказания ветвлений, результаты сохраняются как «интеллектуальные» с последующим удалением тех, которые вызваны промахами в предсказании. На конечном этапе порядок инструкций и результатов их выполнения восстанавливается до первоначального. Технология ускоренных вычислений использует два быстрых АЛУ, выполняющие короткие арифметические и логические операции, и третье медленное АЛУ, исполняющее длинные операции (умножение, деление и т. д.). Используется технология Hyper Treading (tread - поток) – на базе одного МП формируются 2 или более логических процессоров, работающих параллельно. Для задач, позволяющих распараллеливать операции, производительность МП повышается на 30 %. По мнению специалистов, повышение быстродействия МП путем увеличения тактовой частоты их работы исчерпало себя. Поэтому производительность было решено увеличивать за счет параллельного выполнения вычислений. Появляются многоядерные МП. Первым представителем двухъядерных МП для ПК в 2005 г. стал Pentium D. Двухъядерные МП по сравнению с параллельными виртуальными процессорами обеспечивают существенно большую производительность, т. к. у них почти нет совместно используемых процессорных ресурсов (АЛУ, МПП, кэш-память L1 у каждого свои). Потребляемая мощность у них значительно меньше, чем у более высокочастотных однопроцессорных МП той же производительности. Поэтому двух- и многоядерные МП активно используются в ПК. Для двухъядерных МП необходимы системные платы со специальными разъемами и чипсетами. В феврале 2005 г. компаниями Sony, Toshiba и IBM представлены девятиядерные МП Cell (ячейка). В них используется 0,09 мкм-технология, а также достижения электроники: «кремний на изоляторе» (SOI), «напряженный кремний» (Strained Si), медные соединения (Cu). Имеют очень низкое энергопотребление (до 80 Вт). В 2006 г. Intel представила линейку МП Core: Core Solo (1 ядро), Core Duo, Core 2 Duo, Core 2 Extreme (2 ядра), Core 2 Quad (4 ядра), Core Penryn (2-4 ядра). Все МП этой линейки строятся по 65-нанометровой технологии, используют ряд новых энергосберегающих технологий. В 2008 г. Intel предложила 0,045-микронную архитектуру Nechalem – она использует при построении МП модульность, которая позволяет варьировать количество ядер в МП и изменять насыщенность процессорной системы прочими блоками, в зависимости от назначения и требуемой производительности. Используют эту архитектуру МП Core i5 и Core i7. Core i5 является несколько облегченным вариантом Core i7. МП Core i3 — по уровню цены и производительности стоят на самой низкой ступени, перед более дорогими и производительными Core i5.
|