Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Метод сопряженных градиентов

Читайте также:
  1. Amp; Методичні вказівки
  2. Amp; Методичні вказівки
  3. Amp; Методичні вказівки
  4. Amp; Методичні вказівки
  5. Amp; Методичні вказівки
  6. Amp; Методичні вказівки
  7. Amp; Методичні вказівки
  8. B. Искусственная вентиляция легких. Методики проведения искусственной вентиляции легких
  9. Cтруктуры внешней памяти, методы организации индексов
  10. FDDI. Архитектура сети, метод доступа, стек протоколов.

Рассмотренные выше градиентные методы отыскивают точку минимума функции в общем случае лишь за бесконечное число итераций. Метод сопряженных градиентов формирует направления поиска, в большей мере соответствующие геометрии минимизируемой функции. Это существенно увеличивает скорость их сходимости и позволяет, например, минимизировать квадратичную функцию

f(x) = (х, Нх) + (b, х) + а

с симметрической положительно определенной матрицей Н за конечное число шагов п , равное числу переменных функции. Любая гладкая функция в окрестности точки минимума хорошо аппроксимируется квадратичной, поэтому методы сопряженных градиентов успешно применяют для минимизации и неквадратичных функций. В таком случае они перестают быть конечными и становятся итеративными.

По определению, два n-мерных вектора х и у называют сопряженными по отношению к матрице H (или H-сопряженными), если скалярное произведение (x, Ну) = 0. Здесь Н ‑ симметрическая положительно определенная матрица размером п на п.

Одной из наиболее существенных проблем в методах сопряженных градиентов является проблема эффективного построения направлений. Метод Флетчера-Ривса решает эту проблему путем преобразования на каждом шаге антиградиента -f(x[k]) в направление p[k], H-сопряженное с ранее найденными направлениями р[0], р[1], ..., р[k‑1]. Рассмотрим сначала этот метод применительно к задаче минимизации квадратичной функции.

Направления р[k] вычисляют по формулам:

p[k] = (x[k])+bk-1p[k-l], k >= 1;

p[0] = (x[0]).

Величины bk-1 выбираются так, чтобы направления p[k], р[k‑1] были H-сопряженными:

(p[k], Hp[k-1])= 0.

В результате для квадратичной функции

,

итерационный процесс минимизации имеет вид

x[k+l] =x[k] +akp[k],

где р[k] - направление спуска на k-м шаге; аk - величина шага. Последняя выбирается из условия минимума функции f(х) по а в направлении движения, т. е. в результате решения задачи одномерной минимизации:

f(х[k] + аkр[k]) = f(x[k] + ар [k]).

Для квадратичной функции

(7.14)

Алгоритм метода сопряженных градиентов Флетчера-Ривса состоит в следующем.

1. В точке х[0] вычисляется p[0] = ‑f’(x[0]).

2. На k-м шаге по приведенным выше формулам определяются шаг аk. и точка х[k+1].



3. Вычисляются величины f(x[k+1]) и f’(x[k+1]).

4. Если (x[k+1]) = 0, то точка х[k+1] является точкой минимума функции f(х). В противном случае определяется новое направление p[k+l] из соотношения

(7.15)

и осуществляется переход к следующей итерации. Эта процедура найдет минимум квадратичной функции не более чем за п шагов. При минимизации неквадратичных функций метод Флетчера-Ривса из конечного становится итеративным. В таком случае после (п+1)-й итерации процедуры 1-4 циклически повторяются с заменой х[0] на х[п+1] , а вычисления заканчиваются при , где - заданное число. При этом применяют следующую модификацию метода:

x[k+l] = x[k] +akp[k],

p[k] = -f’(x[k])+bk-1p[k‑l], k >= 1;

p[0] = ‑ (x[0]);

f(х[k] + akp[k]) = f(x[k] + ap[k];

. (7.16)

Здесь I- множество индексов: I = {0, n, 2п, Зп, ...}, т. е. обновление метода происходит через каждые п шагов.

Геометрический смысл метода сопряженных градиентов состоит в следующем (рис. 7.11). Из заданной начальной точки х[0] осуществляется спуск в направлении р[0] = ‑f'(x[0]). В точке х[1] определяется вектор-градиент f'(x [1]). Поскольку х[1] является точкой минимума функции в направлении р[0], то f’(х[1]) ортогонален вектору р[0]. Затем отыскивается вектор р [1], H-сопряженный к р [0] . Далее отыскивается минимум функции вдоль направления р[1] и т. д.



Рис. 7.11Траектория спуска в методе сопряженных градиентов

Методы сопряженных направлений являются одними из наиболее эффективных для решения задач минимизации. Однако следует отметить, что они чувствительны к ошибкам, возникающим в процессе счета. При большом числе переменных погрешность может настолько возрасти, что процесс придется повторять даже для квадратичной функции, т. е. процесс для нее не всегда укладывается в п шагов.


Дата добавления: 2015-04-05; просмотров: 10; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Метод наискорейшего спуска | Особенности методов второго порядка
lektsii.com - Лекции.Ком - 2014-2019 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты