Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Постановка задачи. Транспортная задача является частным типом задачи линейного программирования и формулируется следующим образом




Транспортная задача является частным типом задачи линейного программирования и формулируется следующим образом. Имеется m пунктов отправления (или пунктов производства) Аi …, Аm, в которых сосредоточены запасы однородных продуктов в количестве a1, ..., аm единиц. Имеется n пунктов назначения (или пунктов потребления) В1, ..., Вm, потребность которых в указанных продуктах составляет b1, ..., bn единиц. Известны также транспортные расходы Сij, связанные с перевозкой единицы продукта из пункта.Ai в пункт Вj, i 1, …, m; j 1, ..., n. Предположим, что

(7.24)

т. е. общий объем производства равен общему объему потребления. Требуется составить такой план перевозок (откуда, куда и сколько единиц продукта везти), чтобы удовлетворить спрос всех пунктов потребления за счет реализации всего продукта, произведенного всеми пунктами производства, при минимальной общей стоимости всех перевозок. Приведенная формулировка транспортной задачи называется замкнутой транспортной моделью. Формализуем эту задачу.

Пусть хij - количество единиц продукта, поставляемого из пункта Аi в пункт Вj. Подлежащие минимизации суммарные затраты на перевозку продуктов из всех пунктов производства во все пункты потребления выражаются формулой:

(7.25)

Суммарное количество продукта, направляемого из каждого пункта отправления во все пункты назначения, должно быть равно запасу продукта в данном пункте. Формально это означает, что

, i 1, …, m. (7.26)

Суммарное количество груза, доставляемого в каждый пункт назначения из всех пунктов отправления, должно быть равно потребности. Это условие полного удовлетворения спроса:

, j 1, …, n (7.27)

Объемы перевозок ‑ неотрицательные числа, так как перевозки из пунктов потребления в пункты производства исключены:

xij 0, i 1, ..., m; j 1, ..., n.(7.28)

Транспортная задача сводится, таким образом, к минимизации суммарных затрат при выполнении условий полного удовлетворения спроса и равенства вывозимого количества продукта запасам его в пунктах отправления.

В ряде случаев не требуется, чтобы весь произведенный продукт в каждом пункте производства был реализован. В таких случаях баланс производства и потребления может быть нарушен:

, i 1, ..., m.(7.29)

Введение этого условия приводит к открытой транспортной модели.

Задачи транспортного типа широко распространены в практике. Кроме того, к ним сводятся многие другие задачи линейного программирования - задачи о назначениях, сетевые, календарного планирования.

Как одна из задач линейного программирования транспортная задача принципиально может быть решена универсальным методом решения любой задачи линейного программирования, но этот метод не учитывает специфики условий транспортной задачи. Поэтому решение ее симплекс-методом оказывается слишком громоздким.

Структура ограничений задачи учитывается в ряде специальных вычислительных методов ее решения. Рассмотрим некоторые из них. Предварительно сделаем следующее замечание. Открытая транспортная модель может быть приведена к замкнутой модели добавлением фиктивного пункта отправления (потребления), от которого поступает весь недостающий продукт или в который свозится весь избыточный запас. Стоимость перевозок между реальными пунктами и фиктивным принимается равной нулю. Вследствие простоты перехода от открытой модели к замкнутой в дальнейшем рассматриваются методы решения замкнутой модели транспортной задачи.


Поделиться:

Дата добавления: 2015-04-05; просмотров: 112; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты