КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Роль капиллярных явлений в процессах вытеснения нефти водой.При извлечении нефти запасы пластовой энергии расходуются на преодоление различных сил: 1) вязкого трения (гидравлическое сопротивление); 2) адгезионных; 3) капиллярных и др. Капиллярные силы возникают вследствие того, что в пористой среде на уровне водо – нефтяного контакта (ВНК) вместо раздельного фронта движения образуется смесь воды и нефти или газа и нефти. При этом жидкости в капиллярных каналах разбиваются на столбики и шарики, так называемые чётки, которые на время могут закупорить поры пласта вследствие действия капиллярных сил (рис. 2.4.16). А Б
Рис. 2.4.16. Схема образования чёток жидкости в капилляре в зависимости от порядка смачивания: А – чётка смачивающей жидкости; Б – несмачивающей. Рассмотрим перемещение чётки нефти в цилиндрическом гидрофильном капилляре, заполненном водой (рис. 2.4.17). Рис. 2.4.17. Схема движения единичной чётки нефти в гидрофильном капилляре. Поскольку капилляр гидрофильный (с точки зрения полноты вытеснения нефти это наиболее благоприятный случай), его стенки покрыты пленкой воды, которая со стороны чётки испытывает давление, равное σ/r (случай плоской поверхности по формуле Лапласа).Под действием капиллярных сил сама чётка нефти будет стремиться принять шарообразную форму, оказывая давление на мениск между нефтью и водой: . Однако в процессе движения чётки, в результате действия гистерезисных явлений, мениски будут испытывать деформацию. Поэтому радиусы их кривизны и краевые углы смачивания изменятся, причем неодинаково. Так, на рис.2.4.17 краевые углы и наступающий и отступающий, соответственно, следовательно, должно выполняться условие > > . Обозначим соответствующие этим углам радиусы кривизны менисков R' и R". Тогда капиллярные давления, создаваемые этими менисками будут направлены внутрь чётки и равны: . (2.4.10) Таким образом, разность этих давлений будет определять результирующее капиллярное давление чётки, и именно оно будет определять силу, противодействующую внешнему перепаду давления, причем, как видно из рисунка, практически всегда направленную против движения жидкости: . (2.4.11) В практических задачах, конечно, неудобно оперировать изменяющимися радиусами кривизны менисков, поэтому, учитывая, что R cosq = r, из (4.11) получим: . (2.4.12) Эффект Жамена. В реальных пористых средах пластовые флюиды движутся в капиллярах переменного сечения. Рассмотрим случай, когда перемещение четки нефти или газа в окружении воды происходит в сужающемся капилляре (рис. 2.4.18). Заполняя капилляр, чётка деформируется так, что радиусы кривизны правого и левого менисков существенно различаются. Поэтому, даже если суженная часть капилляра является очень узкой, но потенциально проницаемой, может произойти закупорка капилляра. Это можно объяснить тем, что в соответствии с формулой (2.4.11) в цилиндрическом капилляре даже очень малого сечения разность обратных значений радиусов кривизны будет величиной, возможно, очень большой, но конечной. В случае же, когда только один из радиусов бесконечно мал, капиллярное давление становится бесконечно большим. Это явление при движении газоводонефтяных смесей в пористых средах называют эффектом Жамена.
Рис. 2.4.18. Иллюстрация эффекта Жамена . Учитывая, что газоводонефтяные смеси образуются в фильтрационных потоках на протяжении сотен метров, гистерезисные и такие явления, как эффект Жамена могут существенно сказаться на процессе вытеснения нефти. Следует правда отметить, что вследствие сжимаемости газа и упругости жидкости эти эффекты могут быть менее значительными при высоких пластовых давлениях. Кроме того, в реальной пористой среде с хаотичным распределением поровых каналов всегда есть возможность движения по обходным порам. Прыжки Хейнса. Еще более сложные процессы происходят в капиллярах переменного сечения, один из примеров которого схематично изображен на рис. 2.4.19. В таком капилляре мениск периодически изменяется, сжимаясь и растягиваясь в зависимости от сечения, в которое он попадает, причем в сечениях а и с положение мениска будет устойчивым, а между ними – неустойчивым.
Рис. 2.4.19. Иллюстрация эффекта "прыжки Хейнса". При повышении давления в таком канале жидкость будет задерживаться в устойчивых сечениях, пока не преодолеет капиллярное давление, а затем скачком перейдет в расширяющийся участок поры. Это явление называют "прыжки Хейнса". Однако в реальных пористых средах оно, так же как и эффект Жамена, слабо сказывается на процессе фильтрации в целом. Тем не менее, в некоторых случаях, эти эффекты могут привести к дополнительным потерям энергии на преодоление больших и меняющихся капиллярных сил. В заключении отметим, что при расчетах реальных фильтрационных процессов, когда учет капиллярных сил необходим, пользуются усредненной формулой для капиллярного давления в пористой среде: , (2.4.12) где r – средний радиус поровых каналов среды.
В гидрофильной пористой среде капиллярные силы становятся большими в мелких порах, в результате чего по ним продвигается вода, попадая в нефтяную часть, а нефть по крупным порам частично попадает в водную часть, что приводит к фрактальному виду водонефтяного контакта. В случае макронеоднородых коллекторов происходит языковый прорыв воды, в результате которого за фронтом вытеснения остается значительное количество нефти.
Вопросы для закрепления. 1. Сформулируйте правило Антонова. 2. Дайте «силовое» и «энергетическое» определения коэффициента поверхностного натяжения. 3. Как зависит коэффициент поверхностного натяжения от температуры и давления? 4. Что такое избирательной смачивание? 5. Дайте определение краевого угла избирательного смачивания. 6. Выведите уравнение Юнга. 7. Что такое работа адгезии? Единицы измерения. 8. Выведите и проанализируйте уравнение Дюпре - Юнга. 9. Какой физический смысл имеет работа когезии? 10. В чем заключается понятие теплоты смачивания? 11. От каких факторов зависит явление статического гистерезиса смачивания? 12. В чем различие наступающего и отступающего углов смачивания? 13. В чем состоит причина возникновения кинетического гистерезиса смачивания? 14. В чем проявляется капиллярное давление на искривленной поверхности раздела фаз? 15. Запишите и поясните физический смысл формулы Лапласа. 16. Выведите формулу для высоты поднятия жидкости в сферическом капилляре. 17. В чем состоит явление капиллярной пропитки? 18. Выведите и поясните формулу для капиллярного давления при вытеснении нефти водой.
|