Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Ход световых лучей при построении кадра




Как только Вы сняли защитную светонепроницаемую крышку с объектива, световые лучи входят в объектив через переднюю линзу (метка 1 на рис. 1), проходят сквозь систему оптических элементов, которые на схеме для простоты не показаны, и выходят через заднюю линзу (метка 2 на рис. 2). При этом изображение, создаваемое объективом, зеркально отражено, «перевёрнуто», относительно как вертикальной, так и горизонтальной осей кадра:

Рис. 2. Слева – «естественное» изображение шара: источник света находится слева вверху, тень от шара падает на горизонтальную поверхность справа вниз; справа – изображение, созданное объективом.

Затем световые лучи попадают на «полупрозрачное» зеркало (метка 3 на рис. 1). Его наличие обусловливает прилагательное «зеркальный» в названии фотоаппаратов данного вида. В современных камерах зеркало частично отражает свет, частично пропускает сквозь себя, поэтому получило название «полупрозрачного». В камерах с подвижным зеркалом оно отражает 60% приходящих световых лучей, а пропускает через себя 40%.

Вначале прослежу ход отражённых световых лучей. Они попадают на матовое стекло (метка 5 на рис. 1). Так как стекло матированное, оно частично рассеивает свет, и, как следствие, на стекле формируется оптическое плоское изображение. Благодаря отражению в зеркале, оно остаётся «перевёрнутым» лишь относительно вертикальной оси кадра:

Рис. 3. Слева – «естественное» изображение шара: источник света находится слева вверху, тень от шара падает на горизонтальную поверхность справа вниз; справа – изображение, созданное объективом, и «перевёрнутое» относительно горизонтальной оси основным зеркалом фотоаппарата.

Если Вы посмотрите на матовое стекло сверху, то есть сверху вниз относительно корпуса фотоаппарата (при этом фотоаппарат придётся держать на уровне талии), то Вы увидите изображение схожее с правой иллюстрацией рис. 3. В некоторых зеркальных фотоаппаратах с так называемым шахтным видоискателем, выпущенных преимущественно в первой половине 20-ого века, именно таким образом ведётся построение кадра.

Оценка композиции по «перевёрнутому» изображению требует навыка и не удобно, если съёмка осуществляется с высоты человеческого роста. В середине прошлого века конструктор Вильгельм Винзенберг (Wilhelm Winzenberg) немецкой компании Zeiss Ikon разработал фотоаппарат, где впервые использовался оптический прибор – пентапризма (метка 4 на рис. 1). Пентапризма «переворачивает» изображение относительно вертикальной оси, а относительно горизонтальной оси оставляет неизменным (что и нужно, так как зеркало фотоаппарата уже «перевернуло» изображение относительно горизонтальной оси кадра). Благодаря пентапризме Вы можете видеть снимаемую сцену через объектив такой, какой Вы видите её непосредственно.

В 60-ых годах японская компания Asahi Optical выкупила немецкий бренд, а в 2002 году включила название бренда в название компании – Pentax Corporation.

 

Пентапризма состоит из пяти граней (от греч. «pente» – «пять»): две зеркальны, две прозрачны и одна грань не участвует в оптической схеме и выполняет конструктивную функцию. Световые лучи, распространяясь от матового стекла, входят в пентапризму снизу-вверх, а выходят слева-направо через окуляр видоискателя (метка 6 на рис. 1).

Линза между матовым стеклом и пентапризмой (коллективная линза) и система линз между пентапризмой и окуляром играют вспомогательные роли. Коллективная линза сохраняет изображение, сформированное на матовом стекле, приемлемым по качеству. А другие линзы позволяют вручную наводить снимаемый объект на резкость тем фотографам, у которых ослаблено зрение (развита близорукость или дальнозоркость). Приводной диск, регулирующий силу коррекции, находится, обычно, сбоку от окуляра видоискателя.

Фотограф, смотрящий в окуляр, видит изображение, создаваемое объективом, практически таким, каким его «видит» светочувствительный сенсор. Если снимаемый объект наблюдается в резкости в видоискателе, то и на изображении, «фиксируемом» сенсором, объект будет в резкости. Так происходит, потому что расстояния от центра зеркала до светочувствительного слоя и от центра зеркала до матового экрана равны.

Обращаю внимание, что пока Вы строите кадр с помощью видоискателя, светочувствительный сенсор «отдыхает». Эта особенность отличает цифровые зеркальные фотоаппараты от цифровых компактных и беззеркальных камер. В последних нет зеркала. О следствиях такого конструктивного различия я расскажу в конце раздела.

Теперь прослежу ход световых лучей, пропущенных «полупрозрачным» зеркалом.

Световые лучи отражаются от вспомогательного зеркала (метка 8 на рис. 1) и, проходя через систему линз и зеркал, попадают на специальный светочувствительный сенсор (метка 12 на рис. 1). В отличие от сенсора, который «сохраняет» оптическое изображение, этот имеет другую конструкцию и выполняет другие задачи. Прежде всего он участвует в автоматическом наведении снимаемого объекта на резкость. О том, как это происходит, я расскажу подробно в пятой части «основ».

Также специальный сенсор измеряет интенсивность освещения в нескольких зонах кадра – выполняет роль экспонометра. Дополнительно, он может определять качественные характеристики освещения снимаемой сцены, от которых зависит корректная передача цветов на снимках. Этой теме посвящена седьмая часть «основ». В некоторых моделях фотоаппаратов каждую из перечисленных ролей выполняет отдельные сенсоры.

Посмотрите на рис. 4. Он демонстрирует прохождение световых лучей от источника света до выхода из окуляра (глаза фотографа). Описание пути внутри зеркального фотоаппарата я привёл выше.

Рис. 4. Перед нажатием на кнопку спуска затвора до упора. Прохождение световых лучей от источника света до глаза фотографа, смотрящего в окуляр видоискателя.

Дополню описание. Объекты снимаемой сцены отражают свет, излучаемый источником, в различные направления. Часть этих лучей попадает в объектив. Объектив формирует плоское «перевёрнутое» (относительно двух осей одновременно) изображение, которое фотограф может наблюдать в «естественном» положении благодаря основному зеркалу и пентапризме.

Светочувствительный сенсор (метка 12 на рис. 1), который выполняет функцию экспонометра, оценивает отражённый от объекта свет. Поэтому интенсивность освещения определяется фотоаппаратом относительно отражающей способности снимаемых предметов. Так, если снимаемый объект – зелёная ель или человек европеоидной расы (со светлой кожей), то измерения экспонометра будут наиболее точными. Если снимаемый объект – человек негроидной расы (с тёмной кожей) или металлический, хромированный, предмет, то при расчёте экспозиции следует учитывать, что измерения экспонометра могут быть неточными.

Подробнее об особенностях измерения экспозиции по отражённому свету и методах адаптации к ним читайте в восьмой части серии «Основы фотографии». Для понимания принципов измерения также рекомендую прочитать седьмую часть, посвящённую качественным характеристикам света и передаче цветов.

Как же изображение, создаваемое объективом, попадает на светочувствительный слой?


Поделиться:

Дата добавления: 2015-04-05; просмотров: 134; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты