Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



ПОЛОЖИТЕЛЬНЫЕ ЛОГИКИ




Читайте также:
  1. I. Решение логических задач средствами алгебры логики
  2. Взаимосвязь законов логики и их роль в судебной практике
  3. всех основных понятий, строгого описания рассуждений. Именно эта сторона логики позволяет говорить о ней как о строгой науке.
  4. Глава I ПРЕДМЕТ И ЗНАЧЕНИЕ ЛОГИКИ
  5. Задачи и упражнения по функциям алгебры логики
  6. Закон логики – это сложное суждение, которое во всех строках построенной для него таблицы принимает значение «истина».
  7. ЗАКОНЫ АЛГЕБРЫ ЛОГИКИ
  8. Значение законов формальной логики в подготовке и произнесении судебной речи Логические операции доказывания.
  9. Значение логики для судебного познания 1 страница
  10. Значение логики для судебного познания 2 страница

 

Положительные логики — это логики, построенные без опе­рации отрицания. Их можно разделить на два вида: 1) положительные логики в широком смысле слова, или квазипозитивные логики. Они построены без операции отрицания, но отрицание может быть выражено средствами этой логической системы; 2) положительные логики в узком смысле слова, т. е. логики, построенные без операции отрицания, причем отрицание не мо­жет быть выражено средствами этой системы. Можно предло­жить классификацию и по другому основанию: числу логических операций, с помощью которых построена положительная логика. Квазипозитивными логиками, построенными на одной операции, являются логика, построенная на операции «штрих Шеффера» (антиконъюнкции), и логика, основанная на операции антидизъ­юнкции. Квазипозитивная логика, построенная на операции ан­тидизъюнкции, которая соответствует сложному союзу «ни..., ни...» и обозначается («ни а, ни b»), таблично определена так (табл. 24):

Ряд квазипозитивных логик основан на двух операциях. Поло­жительными логиками в узком смысле, основанными на одной операции, являются импликативная логика, основанная на опера­ции импликации, и логика, построенная на операции эквиваленции. Ряд положительных логик основан на двух операциях: а) на импликации и конъюнкции; б) на дизъюнкции и конъюнкции; в) на импликации и дизъюнкции.

Положительная логика (в узком смысле) является подсисте­мой (частичной системой) более сильных логик — интуицио­нистской и классической. Все утверждения положительных логик имеют силу как в интуиционистской логике, так и в классической логике. Внутри самих положительных логик также имеются раз­личные по силе системы. Так, импликативная логика, включа­ющая две аксиомы, слабее, чем положительная логика, включа­ющая, кроме этих двух, аксиомы, характеризующие конъюнкцию и дизъюнкцию. Аксиоматическое построение подтверждает это соотношение: самой сильной является классическая, слабее — ин­туиционистская, еще слабее — положительная логика.

Общеемежду положительной логикой в широком смысле и положительной логикой в узком смысле в том, что среди логических констант этих систем нет операции отрицания.

Отличияэтих систем следующие: 1) в квазипозитивных логиках операция отрицания выразима средствами этой логики, а в положительных логиках в узком смысле операция отрицания не выразима; 2) квазипозитивные логики являются моделями классической логики, т. е. они эквивалентны классической логике высказываний. Положительные логики в узком смысле не эк­вивалентны классической логике, а являются ее подсистемой (частичной системой), а следовательно, слабее классической логи­ки высказываний.



Роль положительных логик в искусственных языках весьма значительна, особенно конструктивной логики А. А. Маркова, которая строится на иерархии языков. В алфавите языка Я\ нет

отрицания, и в нем нельзя выразить отрицание, ибо нет имп­ликации. Марковым был построен язык Я1 ,который хотя и узок, но приспособлен для описания работы нормальных алгоритмов. Этот язык пригоден для выражения некоторых отношений между словами, встречающимися в чистой семиотике и в теории ал­горитмов. С помощью языка Я\ (языка без отрицания) можно дать описание работы различных алгоритмов — и в этом состо­ит важное значение языка без операции отрицания.

Итак, логическая система без операции логического отрица­ния находит свое применение при построении машинных про­грамм. Но если взять искусственные языки, такие, как ФОРТРАН или КОБОЛ и др., которые позволяют воспользоваться высоко­эффективным способом программирования, то в их состав, кро­ме логического сложения и логического умножения, входит и ло­гическое отрицание, соответствующее частице «не» и обознача­емое обычно знаком . Все инструкции о том, как произвести сборку замков, мебели, машин, инструментов, технических при­боров и др., основаны на содержательном (не формализованном) использовании положительной логики.



 


Дата добавления: 2014-11-13; просмотров: 7; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты