Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


КИНЕМАТИКА Основные формулы




ГЛАВА 1 ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ


• Положение материальной точки в пространстве задается радиусом-векторомг:

 
 


где i, j, k — единичные векторы направлений (орты); х, у, z — координаты точки.

Кинематические уравнения движения в координатной форме:

где t — время.

• Средняя скорость

 

где— перемещение материальной точки за интервал времени.

Средняя путевая * скорость

 

где — путь, пройденный точкой за интервал времени .

Мгновенная скорость

где — проекции скорости v на оси координат.

Модуль скорости

 

• Ускорение

 

где проекции ускорения a на оси

координат.

· См. об этом термине, например, в кн.: Детлаф А. А. и др. Курс физики. М., 1973. Т. I. С. 17.

Модуль ускорения


При криволинейном движении ускорение можно представить как сумму нормальной и тангенциальной составляющих (рис.1.1):

Модули этих ускорений:

где R — радиус кривизны в данной точке траектории.

• Кинематическое уравнение равномерного движения материальной точки вдоль оси х

где начальная координата; t — время. При равномерном движении

v=const и a=0.

• Кинематическое уравнение равнопеременного движения( )вдоль оси x

где v0 —начальная скорость; t— время.

Скорость точки при равнопеременном движении

v=v0+at.

• Положение твердого тела (при заданной оси вращения) определяется углом поворота (или угловым перемещением) .

Кинематическое уравнение вращательного движения

• Средняя угловая скорость

где — изменение угла поворота за интервал времени . Мгновенная угловая скорость *

• Угловое ускорение *

• Кинематическое уравнение равномерного вращения

где —начальное угловое перемещение; t—время. При равномерном вращении =const и =0.

* Угловая скорость и угловое ускорение являются аксиальными векторами, их направления совпадают с осью вращения.


Частота вращения

n=N/t, или n=1/T,

где N — число оборотов, совершаемых телом за время t; Т — период вращения (время одного полного оборота).

• Кинематическое уравнение равнопеременного вращения ( = const.)

где —начальная угловая скорость; t—время.

Угловая скорость тела при равнопеременном вращении

.

• Связь между линейными и угловыми величинами, характеризующими вращение материальной точки, выражается следующими формулами:

путь, пройденный точкой по дуге окружности радиусом R,

s= R ( — угол поворота тела);

скорость точки линейная

ускорение точки:

тангенциальное

нормальное

 

Примеры решения задач

Пример 1. Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид x=A+Bt+Ct3, где A=4 м, B=2 м/с, С=-0,5 м/с2. Для момента времени t1=2 с определить:

1) координату x1 точки, 2) мгновенную скорость v1, 3) мгновенное ускорение a1.

Решение. 1. Координату точки, для которой известно кинематическое уравнение движения, найдем, подставив в уравнение движения вместо t заданное значение времени t1:

x=A+Bt+Ct3.

Подставим в это выражение значения A, В, С, t1 и произведем вычисления:

X1=(4+4- 0,5 23) м=4 м.

2. Мгновенную скорость в произвольный момент времени найдем, продифференцировав координату х по времени: .

Тогда в заданный момент времени t1 мгновенная скорость

v1=B+3Ct12 Подставим сюда значения В, С, t1 и произведем вычисления:

v1=-4 м/с.


 

 

Знак минус указывает на то, что в момент времени t1=2 с точка движется в отрицательном направлении координатной оси.

3. Мгновенное ускорение в произвольный момент времени найдем, взяв вторую производную от координаты х по времени:

Мгновенное ускорение в заданный момент времени t1 равно a1=6Ct1. Подставим значения С, t1и произведем вычисления:

a1=(—6 0,5 2) м/с=—6 м/с.

Знак минус указывает на то, что направление вектора ускорения совпадает с отрицательным направлением координатной оси, причем в условиях данной задачи это имеет место для любого момента времени.

Пример 2. Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид, x=A+Bt+Ct2, где A=5 м, B=4 м/с, С=-1 м/с2. Построить график зависимости координаты х и пути s от времени. 2. Определить среднюю скорость <vx> за интервал времени от t1=1 с до t2=6 с. 3. Найти среднюю путевую скорость <v> за тот же интервал времени.

Решение. 1. Для построения графика зависимости координаты точки от времени найдем характерные значения координаты — начальное и максимальное и моменты времени, соответствующие указанным координатам и координате, равной нулю.

Начальная координата соответствует моменту t=0. Ее значение равно

x0=x|t=0=A=5 м.

Максимального значения координата достигает в тот момент, когда точка начинает двигаться обратно (скорость меняет знак). Этот момент времени найдем, приравняв нулю первую производную от координаты повремени:

, откуда t=—B/2C=2 с Максимальная координата

xmax=x/t=2 = 9 М.

Момент времени t, когда координата х=0, найдем из выражения x=A+Bt+Ct2=0.

Решим полученное квадратное уравнение относительно t:

Подставим значения А, В, С и произведем вычисления:

t=(2±3) с.

Таким образом, получаем два значения времени: t'-=5 с и =-1 с. Второе значение времени отбрасываем, так как оно не удовлетворяет условию задачи (t>0).

 

 

График зависимости координаты точки от времени представляет собой кривую второго порядка. Для его построения необходимо иметь пять точек, так как уравнение кривой второго порядка со­держит пять коэффициентов. Поэтому кроме трех вычисленных ра­нее характерных значений координаты найдем еще два значения координаты, соответствующие моментам t1=l с и t2=6 с:

x1 = А + Bt1 + Ct12 = 8 м, x2 = А + Bt2 + Ct22 = -7 м.

Полученные данные представим в виде таблицы:

Время, с Координата, м t1=0 x0=A=5 t1=1 x0=8 tB=2 xmax=9 =5 x=0 t2=6 x2=-7

Используя данные таблицы, чертим график зависимости координаты от времени (рис. 1.2).

График пути построим, исходя из следующих соображений:

1) путь и координата до момента изменения знака скорости совпадают; 2) начиная с момента возврата (tB) точки она движется в обратном направлении и, следовательно, координата ее убывает, а путь продолжает возрастать по тому же закону, по которому убывает координата.

Следовательно, график пути до момента времени tB =2 с совпадает с графиком координаты, а начиная с этого момента яв­ляется зеркальным отображением графика координаты.

2. Средняя скорость <vx> за интервал времени t2—t1 определяется выражением

<vx>=(x2-x1)/(t2—t1).

Подставим значения x1, x2, t1, t2. из таблицы и произведем вычисления

<vx>=(—7—8)/(6—1) м/с=—3 м/с.

3. Среднюю путевую скорость <v> находим из выражения

<v>=s/(t2-t1),

где s — путь, пройденный точкой за интервал времени t2.—t1. Из графика на рис. 1.2 видно, что этот путь складывается из двух отрезков пути: S1=xmaxx1, который точка прошла за интервал времени tB—t1, и S2=xmax+|x2|, который она прошла за интервал

 

Рис. 1.2

T2—tB. Таким образом, путь

S = S1 + S2 = (xmax—x2) + (xmax + |x2|) == 2xmax + |x2|—x1.

Подставим в это выражение значения xmax , |x2|, x1 и произведем вычисления :

<s>=(2 9+7—8) м=17 м.

Тогда искомая средняя путевая скорость

<v>=17/(6—1) м=3,4 м.

Заметим, что средняя путевая скорость всегда положительна.

Пример 3. Автомобиль движется по закруглению шоссе, имеющему радиус кривизны R=50 м. Уравнение * движения автомобиля (t)=A+Bt+Ct2, где A=10 м, B=10 м/с, С=—0,5 м/с2. Найти: 1) скорость v автомобиля, его тангенциальное , нормальное аn. и полное а ускорения в момент времени t=5 с; 2) длину пути s и модуль перемещения | | автомобиля за интервал времени =10 с, отсчитанный с момента начала движения.

Решение. 1. Зная уравнение движения, найдем скорость, взяв первую производную от координаты по времени:

. Подставим в это выражение значения В, С, t и произведем вычисления:

v=5 м/с.

Тангенциальное ускорение найдем, взяв первую производную от скорости по времени: Подставив значение С, получим = —1 м/с2.

Нормальное ускорение определяется по формуле an=v2/R. Подставим сюда найденное значение скорости и заданное значение радиуса кривизны траектории и произведем вычисления:

an==0,5 м/с2.

Полное ускорение, как это видно из рис. 1.1, является геометрической суммой ускорений а и аn: а=а +аn. Модуль ускорения . Подставив в это выражение найденные значения а и аn получим

а=1,12 м/с2.

2. Чтобы определить путь s, пройденный автомобилем, заметим, что в случае движения в одном направлении (как это имеет место в условиях данной задачи) длина пути s равна изменению криволинейной координаты т. е.

s= , или .

Подставим в полученное выражение значения В, С, и произведем вычисления:

s=50 м.

 
 


* В заданном уравнении движения означает криволинейную координату, отсчитанную от некоторой начальной точки на окружности.

 

Модуль перемещения, как это видно из рис. 1.3, равен | r|=2Rsin( /2),

где — угол между радиусами-векторами, определяющими начальное (0) и конечное положения автомашины на траектории. Этот угол (в радианах) находим как отношение длины пути s к радиусу кривизны R траектории, т. е. = =s/R. Таким образом,

Подставим сюда значения R, s ипроизведем вычисления:

| [= 47,9м.

Пример 4. Маховик, вращавшийся с постоянной частотой n0=10 с1, при торможении начал вращаться равнозамедленно. Когда торможение прекратилось, вращение маховика снова стало равномерным, но уже с частотой п=6 с1. Определить угловое ускорение маховика и продолжительность t торможения, если за время равнозамедленного движения маховик сделал N==50 оборотов.

Решение. Угловое ускорение маховика связано с начальной и конечной угловыми скоростями соотношением , откуда Но так как то

Подставив значения , п, п0, N и вычислив, получим

=3,14(62-102)/50 рад/с2=—4,02 рад/с2.

Знак минус указывает на то, что маховик вращался замедленно. Определим продолжительность торможения, используя формулу, связывающую угол поворота со средней угловой скоростью <v> вращения и временем t: =< >t. По условиям задачи, угловая скорость линейно зависит от времени и поэтому можно написать , тогда ,

Откуда

Подставив числовые значения и произведя вычисления, получим

Задачи

Прямолинейное движение

1.1. Две прямые дороги пересекаются под углом =60°. От перекрестка по ним удаляются машины: одна со скоростью v1=60 км/ч, другая со скоростью v2=80 км/ч.

 

 

Определить скорости v' и v", с которыми одна машина удаляется от другой. Перекресток машины прошли одновременно.

1.2. Точка двигалась в течение t1=15c со скоростью v1=5 м/с, в течение t2=10 с со скоростью v2=8 м/с и в течение t3=6 с со скоростью v3=20 м/с. Определить среднюю путевую скорость <v> точки.

1.3. Три четверти своего пути автомобиль прошел со скоростью v1=60 км/ч, остальную часть пути — со скоростью v2=80 км/ч. Какова средняя путевая скорость <v> автомобиля?

1.4. Первую половину пути тело двигалось со скоростью v1=2 м/с, вторую — со скоростью v2=8 м/с. Определить среднюю путевую скорость <v> .

1.5. Тело прошло первую половину пути за время t1=2 с, вторую — за время t2=8 с. Определить среднюю путевую скорость <v> тела, если длина пути s=20 м.

1.6. -Зависимость скорости от времени для движения некоторого тела представлена на рис. 1.4. Определить среднюю путевую скорость <v> за время t=14 с.




 


Рис. 1.4 Рис. 1.5

1.7. Зависимость ускорения от времени при некотором движении тела представлена на рис. 1.5. Определить среднюю путевую скорость <v> за время t=8 с. Начальная скорость v0=0.

1.8. Уравнение прямолинейного движения имеет вид x=At+Bt2, где A=3 м/с, B=—0,25 м/с2. Построить графики зависимости координаты и пути от времени для заданного движения.

1.9. На рис. 1.5 дан график зависимости ускорения от времени для некоторого движения тела. Построить графики зависимости скорости и пути от времени для этого движения, если в начальный момент тело покоилось.

1.10. Движение материальной точки задано уравнением x=At+Bt2, где A =4 м/с, В=—0,05 м/с2. Определить момент времени, в который скорость v точки равна нулю. Найти координату и ускорение в этот момент. Построить графики зависимости координаты, пути, скорости и ускорения этого движения от времени.

1.11. Написать кинематическое уравнение движения x=f(t) точки для четырех случаев, представленных на рис. 1.6. На каждой


позиции рисунка — а, б, в, г — изображена координатная ось Ох, указаны начальные положение x0 и скорость v0 материальной точки А, а также ее ускорение а.

1.12. Прожектор О (рис. 1.7) установлен на расстоянии l==100 м от стены АВ и бросает светлое пятно на эту стену. Прожектор вращается вокруг вертикальной оси, делая один оборот за время Т=20 с. Найти: 1) уравнение движения светлого пятна по стене в течение первой четверти оборота; 2) скорость v, с которой светлое пятно движется по стене, в момент времени t=2 с. За начало отсчета принять момент, когда направление луча совпадает с ОС.




 


1.13. Рядом с поездом на одной линии с передними буферами паровоза стоит человек. В тот момент, когда поезд начал двигаться с ускорением а=0,1 м/с2, человек начал идти в том же направлении со скоростью v=1,5 м/с. Через какое время t поезд догонит человека? Определить скорость v1 поезда в этот момент и путь, пройденный за это время человеком.

1.14. Из одного и того же места начали равноускоренно двигаться в одном направлении две точки, причем вторая начала свое движение через 2 с после первой. Первая точка двигалась с начальной скоростью v1==l м/с и ускорением a1=2 м/с2, вторая — с начальной скоростью v2=10 м/с и ускорением а2=1 м/с2. Через сколько времени и на каком расстоянии от исходного положения вторая точка догонит первую?

1.15. Движения двух материальных точек выражаются уравнениями:

x1=A1+B1t+C1t2, x2=A2+B2t+C2t2,

где A1=20 м, A2=2 м, B1=B2=2 м/с, C1= — 4 м/с2, С2=0,5 м/с2.

В какой момент времени t скорости этих точек будут одинаковыми? Определить скорости v1 и v2 и ускорения a1 и а2 точек в этот момент:

1.16. Две материальные точки движутся согласно уравнениям;

x1=A1t+B1t2+C1t3, x2=A2t+B2t2+C2t3,

где A1=4 м/c, B1=8 м/с2, C1= — 16 м/с3, A2=2 м/с, B2= - 4 м/с2, С2=1м/с3

 


В какой момент времени t ускорения этих точек будут одинаковы? Найти скорости v1 и v2 точек в этот момент.

1.17. С какой высоты Н упало тело, если последний метр своего пути оно прошло за время t=0,1 с?

1.18. Камень падает с высоты h=1200 м. Какой путь s пройдет камень за последнюю секунду своего падения?

1.19. Камень брошен вертикально вверх с начальной скоростью v0==20 м/с. По истечении какого времени камень будет находиться на высоте h=15м? Найти скорость v камня на этой высоте. Сопротивлением воздуха пренебречь. Принять g=10 м/с2.

1.20. Вертикально вверх с начальной скоростью v0=20 м/с брошен камень. Через =1 с после этого брошен вертикально вверх другой камень с такой же скоростью. На какой высоте h встретятся камни?

1.21. Тело, брошенное вертикально вверх, находилось на одной и той же высоте h=8,6 м два раза с интервалом t=3 с. Пренебрегая сопротивлением воздуха, вычислить начальную скорость брошенного тела.

1.22. С балкона бросили мячик вертикально вверх с начальной скоростью v0=5 м/с. Через t=2 с мячик упал на землю. Определить высоту балкона над землей и скорость мячика в момент удара о землю.

1.23. Тело брошено с балкона вертикально вверх со скоростью v0=10 м/с. Высота балкона над поверхностью земли h=12,5 м. Написать уравнение движения и определить среднюю путевую скорость <v> с момента бросания до момента падения на землю.

1.24. Движение точки по прямой задано уравнением x=At+Bt2, где A =2 м/с, В=—0,5 м/с2. Определить среднюю путевую скорость <v> движения точки в интервале времени от t1=l с до t2=3 с.

1.25. Точка движется по прямой согласно уравнению x=At+Bt3, где A=6 м/с, В == —0,125 м/с3. Определить среднюю путевую скорость <v> точки в интервале времени от t1=2 с до t2=6 с.

Криволинейное движение

1.26. Материальная точка движется по плоскости согласно уравнению r(t)=iAt3+jBt2. Написать зависимости: 1) v(t); 2) a(t).

1.27. Движение материальной точки задано уравнением r(t)=A (icos t - j sin t), где A =0,5 м, =5 рад/с. Начертить траекторию точки. Определить модуль скорости |v| и модуль нормального ускорения |an|.

1.28. Движение материальной точки задано уравнением r(t)=i(A+Bt2)+jCt, где A==10 м, В= — 5 м/с2, С=10 м/с. Начертить траекторию точки. Найти выражения v(t) и a(t). Для момента времени t=1 с вычислить: 1) модуль скорости |v| ; 2) модуль ускорения |а|; 3) модуль тангенциального ускорения |а |; 4) модуль нор­мального ускорения |an|.

1.29. Точка движется по кривой с постоянным тангенциальным ускорением a =0,5 м/с2. Определить полное ускорение а точки на


участке кривой с радиусом кривизны R=3 м, если точка движется на этом участке со скоростью v==2 м/с.

1.30. Точка движется по окружности радиусом R==4 м. Начальная скорость v0 точки равна 3 м/с, тангенциальное ускорение a =1 м/с2. Для момента времени t=2 с определить: 1) длину пути s, пройденного точкой; 2) модуль перемещения | |; 3) среднюю путевую скорость | |; 4) модуль вектора средней скорости |<v>|.

1.31. По окружности радиусом .R=5 м равномерно движется материальная точка со скоростью v=5 м/с. Построить графики зависимости длины пути s и модуля перемещения | | от времени t. В момент времени, принятый за начальный (t=0), s(0) и | (0)| считать равными нулю.

1.32. За время t=6 с точка прошла путь, равный половине длины окружности радиусом R==0,8 м. Определить среднюю путевую скорость <v> за это время и модуль вектора средней скорости |<v>|.

1.33. Движение точки по окружности радиусом R=4 м задано уравнением * =A+Bt+Ct2, где A=10 м, В=—2 м/с, С=1 м/с2. Найти тангенциальное а , нормальное an и полное а ускорения точки в момент времени t=2с.

1.34. По дуге окружности радиусом R= 10 м движется точка. В некоторый момент времени нормальное ускорение точки аn=4,9 м/с2; в этот момент векторы полного и нормального ускорений образуют угол =60°. Найти скорость v и тангенциальное ускорение a точки.

1.35. Точка движется по окружности радиусом R=2 м согласно уравнению * =At3, где A =2 м/с3. В какой момент времени t нормальное ускорение аn точки будет равно тангенциальному а .Определить полное ускорение а в этот момент.

1.36. Движение точки по кривой задано уравнениями x=A1t3 и y=A2t, где A1==l м/с3, A2=2 м/с. Найти уравнение траектории точки, ее скорость v и полное ускорение а в момент времени t=0,8 с.

1.37. Точка А движется равномерно со скоростью v по окружности радиусом R. Начальное положение точки и направление движения указаны на рис. 1.8. Написать кинематическое уравнение движения проекции точки A на направление оси х.

1.38. Точка движется равномерно со скоростью v по окружности радиусом R и в момент времени, принятый за начальный (t=0), занимает положение, указанное на рис. 1.8. Написать кинематические уравнения движения точки: 1) в декартовой системе координат, расположив оси так, как это указано на рисунке; 2) в полярной системе координат (ось х считать полярной осью).

1.39. Написать для четырех случаев, представленных на рис. 1.9:

1) кинематические уравнения движения x=f1(t) и x=f2(t); 2) уравнение траектории у= (х). На каждой позиции рисунка — а, б, в, г — изображены координатные оси, указаны начальное положение точки A, ее начальная скорость v0 и ускорение g.

1.40. С вышки бросили камень в горизонтальном направлении.

* См. сноску на с. 11.


Через промежуток времени t=2 с камень упал на землю на расстоянии s=40 м от основания вышки. Определить начальную v0 и конечную v скорости камня.

1.41. Тело, брошенное с башни в горизонтальном направлении со скоростью v=20 м/с, упало на землю на расстоянии s (от основания башни), вдвое большем высоты h башни. Найти высоту башни.





 


Рис. 1.8 Рис. 1.9

1.42. Пистолетная пуля пробила два вертикально закрепленных листа бумаги, расстояние l между которыми равно 30 м. Пробоина во втором листе оказалась на h=10см ниже, чем в первом. Определить скорость v пули, если к первому листу она подлетела, двигаясь горизонтально. Сопротивлением воздуха пренебречь.

1.43. Самолет, летевший на высоте h-=2940 м со скоростью v=360 км/ч, сбросил бомбу. За какое время t до прохождения над целью и на каком расстоянии s от нее должен самолет сбросить бомбу, чтобы попасть в цель? Сопротивлением воздуха пренебречь.

1.44. Тело брошено под некоторым углом к горизонту. Найти этот угол, если горизонтальная дальность s полета тела в четыре раза больше максимальной высоты Н траектории.

1.45. Миномет установлен под углом =60° к горизонту на крыше здания, высота которого h=40 м. Начальная скорость v0 мины равна 50 м/с. Требуется: 1) написать кинематические уравнения движения и уравнения траектории и начертить эту траекторию с соблюдением масштаба; 2) определить время полета мины, максимальную высоту Н ее подъема, горизонтальную дальность s полета, скорость v в момент падения мины на землю. Сопротивлением воздуха пренебречь.

Указание. Начало координат поместить на поверхности земли так, чтобы оно находилось на одной вертикали с минометом и чтобы вектор скорости vлежал в плоскости хОу.

1.46. Снаряд, выпущенный из орудия под углом =30° к горизонту, дважды был на одной и той же высоте h: спустя время t1=10 с и t2=50 с после выстрела.


Определить начальную скорость v0 и высоту h.

1.47. Пуля пущена с начальной скоростью v0=200 м/с под углом =60° к горизонту. Определить максимальную высоту Н подъема, дальность s полета и радиус R кривизны траектории пули в ее наивысшей точке. Сопротивлением воздуха пренебречь.

1.48. Камень брошен с вышки в горизонтальном направлении с начальной скоростью v0=30 м/с. Определить скорость v, тангенциальное a и нормальное an ускорения камня в конце второй секунды после начала движения.

1.49. Тело брошено под углом =30° к горизонту. Найти тангенциальное a ; и нормальное аn ускорения в начальный момент движения.

 

Вращение тела вокруг неподвижной оси

 

1.50. Определить линейную скорость v и центростремительное ускорение an точек, лежащих на земной поверхности: 1) на экваторе; 2) на широте Москвы ( =56°).

1.51. Линейная скорость v1 точек на окружности вращающегося диска равна 3 м/с. Точки, расположенные на =10 см ближе к оси, имеют линейную скорость v2=2 м/с. Определить частоту вращения п диска.

1.52. Два бумажных диска насажены на общую горизонтальную ось так, что плоскости их параллельны и отстоят на d=30 см друг от друга. Диски вращаются с частотой n==25 с-1. Пуля, летевшая параллельно оси на расстоянии r=12 см от нее, пробила оба диска. Пробоины в дисках смещены друг относительно друга на расстояние s=5 см, считая по дуге окружности. Найти среднюю путевую скорость <v> пули в промежутке между дисками и оценить создаваемое силой тяжести смещение пробоин в вертикальном направлении. Сопротивление воздуха не учитывать.

1.53. На цилиндр, который может вращаться около горизонтальной оси, намотана нить. К концу нити привязали грузик и предоставили ему возможность опускаться. Двигаясь равноускоренно, грузик за время t=3 с опустился на h= 1,5 м. Определить угловое ускорение цилиндра, если его радиус r=4 см.

1.54. Диск радиусом r=10 см, находившийся в состоянии покоя, начал вращаться с постоянным угловым ускорением =0,5 рад/с2. Найти тангенциальное a , нормальное ап и полное а ускорения точек на окружности диска в конце второй секунды после начала вращения.

1.55. Диск радиусом r=20 см вращается согласно уравнению =A+Bt+Сt3, где A=3 рад, В=—1 рад/с, С=0,1 рад/с3. Определить тангенциальное a нормальное аn и полное а ускорения точек на окружности диска для момента времени t=10 с.

1.56. Маховик начал вращаться равноускоренно и за промежуток времени t=10 с достиг частоты вращения n=300 мин"1. Определить угловое ускорение маховика и число N оборотов, которое он сделал за это время.

 

1.57. Велосипедное колесо вращается с частотой п=5 с1. Под действием сил трения оно остановилось через интервал времени t=1 мин. Определить угловое ускорение и число N оборотов, которое сделает колесо за это время.

1.58. Колесо автомашины вращается равноускоренно. Сделав N=50 полных оборотов, оно изменило частоту вращения от n1=4 с1 до n2==6 с1. Определить угловое ускорение колеса.

1.59. Диск вращается с угловым ускорением =—2 рад/с2. Сколько оборотов N сделает диск при изменении частоты вращения от n1=240 мин -1 до n2=90 мин -1? Найти время t, в течение которого это произойдет.

1.60. Винт аэросаней вращается с частотой n=360 мин1. Скорость v поступательного движения аэросаней равна 54 км/ч. С какой скоростью u движется один из концов винта, если радиус R винта равен 1 м?

1.61. На токарном станке протачивается вал диаметром d=60 мм. Продольная подача h резца равна 0,5 мм за один оборот. Какова скорость v резания, если за интервал времени t=1 мин протачивается участок вала длиной l=12 см?

 

 


Поделиться:

Дата добавления: 2015-04-15; просмотров: 233; Мы поможем в написании вашей работы!; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Личность и потребительский выбор | Путь. Вектор перемещения
lektsii.com - Лекции.Ком - 2014-2024 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты