Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



ВВЕДЕНИЕ. Технология рекомбинантной ДНК (ее называют также молекулярным клонированием или генной инженерией) — это совокупность экспериментальных процедур




Читайте также:
  1. C. Введение антирабической сыворотки
  2. I ВВЕДЕНИЕ
  3. I. ВВЕДЕНИЕ
  4. I. Введение. Понятие культуры. Материальная и духовная культура.
  5. I.Введение в экономическую теорию
  6. VI. ВВЕДЕНИЕ В АНАТОМИЮ МАССОВОГО ЧЕЛОВЕКА
  7. Алексеев Н.Н. Введение в изучение права. М., 1917.
  8. БДСМ – Введение в теорию Доминирования
  9. БИБЛЕР В. С. МЫШЛЕНИЕ КАК ТВОРЧЕСТВО (ВВЕДЕНИЕ В ЛОГИКУ МЫСЛЕННОГО ДИАЛОГА). - М., 1975
  10. Борытко Н.М., Соловцова И.А., Байбаков А.М. Введение в педагогику толерантности. - Волгоград: Изд-во ВГИПК РО, 2006. - 80 с.

Технология рекомбинантной ДНК (ее называют также молекулярным клонированием или генной инженерией) — это совокупность экспериментальных процедур, позволяющая осуществлять перенос генетического материала (дезоксирибонуклеиновой кислоты, ДНК) из одного организма в другой (Глик Б. и Пастернак Дж). Другими словами – это получение новых комбинаций генетического материала путем проводимых вне клетки манипуляций с молекулами нуклеиновых кислот и переноса созданных конструкций генов в живой организм, в результате которого достигается их включение и активность в этом организме и у его потомства. Речь идет о направленном, по заранее заданной программе конструировании молекулярных генетических систем вне организма с последующим введением их в живой организм. При этом рекомбинантные ДНК становятся составной частью генетического аппарата рецепиентного организма и сообщают ему новые уникальные генетические, биохимические, а затем и физиологические свойства.

Генная инженерия появилась благодаря работам многих исследователей в разных отраслях биохимии и молекулярной генетики. На протяжении многих лет главным классом макромолекул считали белки. Существовало даже предположение, что гены имеют белковую природу. Лишь в 1944 году Эйвери, Мак Леод и Мак Карти показали, что носителем наследственной информации является ДНК. С этого времени начинается интенсивное изучение нуклеиновых кислот. Спустя десятилетие, в 1953 году Дж. Уотсон и Ф. Крик, основываясь на многочисленном фактическом материале по химии нуклеиновых кислот и рентгеноструктурному анализу ДНК, создали двуспиральную модель структуры ДНК. Именно этот год принято считать годом рождения молекулярной биологии.

На рубеже 50 - 60-х годов были выяснены свойства генетического кода, а к концу 60-х годов его универсальность была подтверждена экспериментально. Шло интенсивное развитие молекулярной генетики, объектами которой стали E. coli, ее вирусы (бактериофаги) и плазмиды. Были разработаны методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, плазмид и вирусов. ДНК вирусов и плазмид вводили в клетки в биологически активной форме, обеспечивая ее репликацию и экспрессию соответствующих генов. В 70-х годах был открыт ряд ферментов, катализирующих реакции превращения ДНК. Таким образом, предпосылками к созданию технологии рекомбинантных ДНК послужили многие открытия в области молекулярной биологии, энзимологии нуклеиновых кислот и молекулярной генетики бактериальных вирусов и внехромосомных элементов бактерий (плазмид). Конструирование рекомбинантных молекул осуществляется с помощью целого арсенала ферментов — обязательного и незаменимого инструмента практически всех этапов этого сложнейшего процесса. Особая роль в развитии методов генной инженерии принадлежит рестрицирующим эндонуклеазам и ДНК-лигазам.



Технология рекомбинантной ДНК является важной составной частью биотехнологии. Поэтому ее часто называют молекулярной биотехнологией. Родившись в начале 70-х годов, она добилась сегодня больших успехов. Методы молекулярной биотехнологии преобразуют клетки бактерий, дрожжей и млекопитающих в "фабрики" для масштабного производства любого белка. Это дает возможность детально анализировать структуру и функции белков и использовать их в качестве лекарственных средств. В качестве примера можно привести биотехнологическое производство соматотропина.



Соматотропин - гормон роста человека, секретируемый гипофизом. Недостаток этого гормона приводит к гипофизарной карликовости. Если вводить соматотропин в дозах 10 мг на кг веса три раза в неделю, то за год ребенок, страдающий от его недостатка, может подрасти на 6 см. Ранее его получали из трупного материала, из одного трупа: 4 - 6 мг соматотропина в пересчете на конечный фармацевтический препарат. Таким образом, доступные количества гормона были ограничены, кроме того, гормон, получаемый этим способом, был неоднороден и мог содержать медленно развивающиеся вирусы. Компания "Genentec" (США) в 1980 году разработала технологию производства соматотропина с помощью бактерий, который был лишен перечисленных недостатков. В 1982 году гормон роста человека был получен в культуре E. coli и животных клеток в институте Пастера во Франции.

В 1978 году исследователи из компании "Genentec" впервые получили в специально сконструированном штамме кишечной палочки другой гормон – инсулин, а с 1984 года было начато промышленное производство этого необходимого медицинского препарата и в СССР. При производстве интерферона используют как E. coli, S. cerevisae (дрожжи), так и культуру фибробластов или трансформированных лейкоцитов. Аналогичными методами получают также безопасные и дешевые вакцины.

На технологии рекомбинантных ДНК основано получение высокоспецифичных ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями у разных организмов. ДНК-зонды также используют в диагностике различных заболеваний.
Технология рекомбинантных ДНК сделала возможным нетрадиционный подход "белок-ген", получивший название "обратная генетика". При таком подходе из клетки выделяют белок, клонируют ген этого белка, модифицируют его, создавая мутантный ген, кодирующий измененную форму белка. Полученный ген вводят в клетку. Если он экспрессируется, несущая его клетка и ее потомки будут синтезировать измененный белок. Таким образом, открывается возможность “исправлять” дефектные гены и лечить наследственные заболевания.



Если гибридную ДНК ввести в оплодотворенное яйцеклетку, могут быть получены трансгенные организмы, экспрессирующие мутантный ген и передающие его потомкам. Генетическая трансформация животных позволяет установить роль отдельных генов и их белковых продуктов как в регуляции активности других генов, так и при различных патологических процессах. С помощью генетической инженерии созданы линии животных, устойчивых к вирусным заболеваниям, а также породы животных с полезными для человека признаками. Например, микроинъекция рекомбинантной ДНК, содержавшей ген соматотропина быка, в зиготу кролика позволила получить трансгенное животное с гиперпродукцией этого гормона. Полученные животные обладали ярко выраженной акромегалией.
В настоящее время даже трудно предсказать все возможности, которые будут реализованы в ближайшие несколько десятков лет.

Цель прикладной генетической инженерии заключается в конструировании таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека. Например, получение “биологических реакторов” - микроорганизмов, растений и животных, продуцирующих фармакологически значимые для человека вещества, создание сортов растений и пород животных с определёнными ценными для человека признаками. Методы генной инженерии позволяют провести генетическую паспортизацию, диагностировать генетические заболевания, создавать ДНК-вакцины, проводить генотерапию различных заболеваний.

Технология рекомбинантных ДНК использует следующие методы:

  • специфическое расщепление ДНК эндонуклеазами рестрикции, ускоряющее выделение и манипуляции с отдельными генами;
  • быстрое секвенирование последовательности нуклеотидов очищенного фрагмента ДНК, что позволяет определить границы гена и аминокислотную последовательность, кодируемую им;
  • конструирование рекомбинантной ДНК;
  • гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большей точностью и чувствительностью, основанную на их способности связывать комплементарные последовательности нуклеиновых кислот;
  • клонирование ДНК: амплификация in vitro с помощью цепной полимеразной реакции или введение фрагмента ДНК в бактериальную клетку, которая после такой трансформации воспроизводит этот фрагмент в миллионах копий;
  • введение рекомбинантной ДНК в клетки или организмы.

Однако, никакого единого, универсального набора методик здесь не существует, но чаще всего эксперименты с рекомбинантной ДНК проводят по следующей схеме:

· из организма — донора нужных генов — экстрагируют нативную ДНК (клонируемая ДНК, встраиваемая ДНК, ДНК-мишень, чужеродная ДНК), подвергают ее ферментативному гидролизу (расщепляют, разрезают) и соединяют (лигируют, сшивают) с другой ДНК (вектор для клонирования, клонирующий вектор) с образованием новой, рекомбинантной молекулы (конструкция “клонирующий вектор—встроенная ДНК”);

· эту конструкцию вводят в клетку-хозяина (реципиент), где она реплицируется и передается потомкам. Этот процесс называется трансформацией;

· идентифицируют и отбирают клетки, несущие рекомбинантную ДНК (трансформированные клетки);

· получают специфический белковый продукт, синтезированный клетками-хозяевами, что служит подтверждением клонирования искомого гена.

 

 

.

 

 


Дата добавления: 2015-04-16; просмотров: 28; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты