КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Теплопроводность через однослойную и многослойную стенки. Теплопроводность цилиндрической стенки.1).Однородная плоская стенка (Рис.9.2.). Температуры поверхностей стенки –tст1 и tст2.Плотность теплового потока: q = -λ∙ ∂t/∂n = - λ∙ ∂t/∂x = - λ∙ (tcт2 - tcт1)/(xcт2 - xcт1)∙или q = λ∙ (tcт2 - tcт1)/(xcт2 - xcт1)∙ ∂t/∂x (9.13) температурный напор; толщина стенки. Тогда q = λ/δ∙(tст1 – tст2) = λ/δ∙Δt, (9.14) Если R =δ/λ -термическое сопротивление теплопроводности стенки [(м2∙К)/Вт], то плотность теплового потока: q = (tст1 – tст2)/R . (9.15) Общее количество теплоты, которое передается через поверхность F за время τ определяется: Q = q∙F∙τ = (tст1 – tст2)/R·F∙τ . (9.16) Температура тела в точке с координатой х находится по формуле: tx = tст1 – (tст1 – tст2)∙x/ δ . (9.17) 2).Многослойная плоская стенка. Рассмотрим 3-х слойную стенку (Рис.9.3). Температура наружных поверхностей стенокtст1 и tст2, коэффициенты теплопроводности слоев λ1, λ2, λ3, толщина слоевδ1, δ2, δ3. Плотности тепловых потоков через каждый слой стенки: q = λ1/δ1∙(tст1 – tсл1) , (9.18) q = λ2/δ2∙(tсл1 – tсл2) , (9.19) q = λ3/δ3∙(tсл2 – tст2) , (9.20) Решая эти уравнения, относительно разности температур и складывая, получаем: q = (t1 – t4)/(δ1/λ1 + δ2/λ2 + δ3/λ3) = (tст1 – tст4)/Ro , (9.21) где: Ro = (δ1/λ1 + δ2/λ2 + δ3/λ3) – общее термическое сопротивление теплопроводности многослойной стенки. Температура слоев определяется по следующим формулам: tсл1 = tст1 – q∙(δ1/λ1). (9.22) tсл2 = tсл1 – q·δ2/λ2). (9.23) 1). Однородная цилиндрическая стенка. Рассмотрим однородный однослойный цилиндр длиной l, внутренним диаметром d1и внешним диаметром d2 (Рис.9.4). Температуры поверхностей стенки –tст1 и tст2. Уравнение теплопроводности по закону Фурье в цилиндрических координатах: Q = - λ∙2∙π∙r ·l· ∂t / ∂r (9.24) или Q = 2·π·λ·l·Δt/ln(d2/d1), (9.25) где: Δt = tст1 – tст2 – температурный напор; λ – коэффициент теплопроводности стенки. Для цилиндрических поверхностей вводят понятия тепловой поток единицы длины цилиндрической поверхности (линейная плотность теплового потока), для которой расчетные формулы будут: ql = Q/l =2·π·λ·Δt /ln(d2/d1), [Вт/м]. (9.26) Температура тела внутри стенки с координатой dх: tx = tст1 – (tст1 – tст2) ·ln(dx/d1) / ln(d2/d1). (9.27)
27. Конвекционный теплообмен. Закон Ньютона – Рихмана. Факторы влияющие на интенсивность КТО. Конвективным теплообменом называется одновременный перенос теплоты конвекцией и теплопроводностью. В инженерных расчетах часто определяют конвективный теплообмен между потоками жидкости или газа и поверхностью твердого тела. Этот процесс конвективного теплообмена называют конвективной теплоотдачей или просто теплоотдачей. Основными факторами, влияющими на процесс теплоотдачи являются следующие: 1). Природа возникновения движения жидкости вдоль поверхности стенки. Самопроизвольное движение жидкости (газа) в поле тяжести, обусловленное разностью плотностей её горячих и холодных слоев, называют свободным движением (естественная конвекция). Движение, создаваемое вследствие разности давлений, которые создаются насосом, вентилятором и другими устройствами, называется вынужденным (вынужденная конвекция). 2). Режим движения жидкости. Упорядоченное, слоистое, спокойное, без пульсаций движение называется ламинарным. Беспорядочное, хаотическое, вихревое движение называется турбулентным. 3). Физические свойства жидкостей и газов. Большое влияние на конвективный теплообмен оказывают следующие физические параметры: коэффициент теплопроводности (l), удельная теплоемкость (с), плотность (ρ), коэффициент температуропроводности (а = λ/cр·ρ), коэффициент динамической вязкости (μ) или кинематической вязкости (ν = μ/ρ), температурный коэффициент объемного расширения (β = 1/Т). 4). Форма (плоская, цилиндрическая), размеры и положение поверхности (горизонтальная, вертикальная). Закон Ньютона-Рихмана. Процесс теплообмена между поверхностью тела и средой описывается законом Ньютона-Рихмана, которая гласит, что количество теплоты, передаваемая конвективным теплообменом прямо пропорционально разности температур поверхности тела (t'ст) и окружающей среды (t'ж): Q = α · (t'ст - t'ж)·F , (10.1) или q = α · (t'ст - t'ж) , (10.2) где: коэффициент теплоотдачи [Вт/(м2К)], характеризует интенсивность теплообмена между поверхностью тела и окружающей средой. Факторы, которые влияют на процесс конвективного теплообмена, включают в этот коэффициент теплоотдачи. Тогда коэффициент теплоотдачи является функцией этих параметров и можно записать эту зависимость в виде следующего уравнения: α = f1(Х; Ф; lo; xc; yc; zc; wo; θ; λ; а; ср; ρ; ν; β) , (10.3) где: Х – характер движения среды (свободная, вынужденная); Ф – форма поверхности; lo – характерный размер поверхности (длина, высота, диаметр и т.д.); xc; yc; zc – координаты; wo – скорость среды (жидкость, газ); θ = (t'ст - t'ж) – температурный напор; λ – коэффициент теплопроводности среды; а – коэффициент температуропроводности среды; ср –изобарная удельная теплоемкость среды; ρ –плотность среды; ν – коэффициент кинематической вязкости среды; β – температурный коэффициент объемного расширения среды. Уравнение (10.3) показывает, что коэффициент теплоотдачи величина сложная и для её определения невозможно дать общую формулу. Поэтому для определения коэффициента теплоотдачи применяют экспериментальный метод исследования. Достоинством экспериментального метода является: достоверность получаемых результатов; основное внимание можно сосредоточить на изучении величин, представляющих наибольший практический интерес. Основным недостатком этого метода является, что результаты данного эксперимента не могут быть использованы, применительно к другому явлению, которое в деталях отличается от изученного. Поэтому выводы, сделанные на основании анализа результатов данного экспериментального исследования, не допускают распространения их на другие явления. Следовательно, при экспериментальном методе исследования каждый конкретный случай должен служить самостоятельным объектом изучения.
|