![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Электрическое поле.По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле. Это поле оказывает силовое действие на другие заряженные тела. Главное свойство электрического поля – действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела. Электрическое поле, окружающее заряженное тело, можно исследовать с помощью, так называемого пробного заряда – небольшого по величине точечного заряда, который не производит заметного перераспределения исследуемых зарядов. Для количественного определения электрического поля вводится силовая характеристика напряженность электрического поля.Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда: Напряженность электрического поля – векторная физическая величина. Направление вектора в каждой точке пространства совпадает с направлением силы, действующей на положительный пробный заряд. Электрическое поле неподвижных и не меняющихся со временем зарядов называется электростатическим. Во многих случаях для краткости это поле обозначают общим термином – электрическое поле Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряженностей электрических полей, создаваемых в той же точке зарядами в отдельности:
Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции. В соответствии с законом Кулона напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулю
Это поле называется кулоновским. В кулоновском поле направление вектора Для наглядного изображения электрического поля используют силовые линии. Эти линии проводят так, чтобы направление вектора . Рисунок 1 Силовые линии электрического поля Силовые линии кулоновских полей положительных и отрицательных точечных зарядов изображены на рис. 2. Так как электростатическое поле, создаваемое любой системой зарядов, может быть представлено в виде суперпозиции кулоновских полей точечных зарядов, изображенные на рис. 2 поля можно рассматривать как элементарные структурные единицы («кирпичики») любого электростатического поля. Рисунок 2 Силовые линии кулоновских полей Кулоновское поле точечного заряда Q удобно записать в векторной форме. Для этого нужно провести радиус-вектор где r – модуль радиус-вектора В качестве примера применения принципа суперпозиции полей на рис. 3. изображена картина силовых линий поля электрического диполя – системы из двух одинаковых по модулю зарядов разного знака q и –q, расположенных на некотором расстоянии l. Рисунок 3 Силовые линии поля электрического диполя Важной характеристикой электрического диполя является так называемый дипольный момент где Диполь может служить электрической моделью многих молекул. Электрическим дипольным моментом обладает, например, нейтральная молекула воды (H2O), так как центры двух атомов водорода располагаются не на одной прямой с центром атома кислорода, а под углом 105° (рис .4). Дипольный момент молекулы воды p = 6,2·10–30 Кл · м. Рисунок 4 Дипольный момент молекулы воды Во многих задачах электростатики требуется определить электрическое поле Рисунок 5 Электрическое поле заряженной нити Поле в точке наблюдения P может быть представлено в виде суперпозиции кулоновских полей, создаваемых малыми элементами Δx нити, с зарядом τΔx, где τ – заряд нити на единицу длины. Задача сводится к суммированию (интегрированию) элементарных полей
Вектор
Рисунок 7 Модель. Движение заряда в электрическом поле
|