Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Волноводные методы передачи энергии




В связи с развитием объединенных энергосистем в Европе, Северной и Южной Америке и предложениями по созданию глобальной солнечной энергосистемы появились задачи по созданию технологии передачи тераваттных трансконтинентальных потоков электрической энергии. В конкуренцию между системами передачи на переменном и постоянном токе может вступить третий метод: резонансный волноводный метод передачи электрической энергии на повышенной частоте, впервые предложенный Николой Теслой в 1897 году и детально разработанный во ВИЭСХе в 1995‑2010 годах.

Крупные энергетические компании во многих странах мира вкладывают гигантские средства и научные ресурсы в создание технологии высокотемпературной сверхпроводимости для снижения джоулевых потерь в линии.

Существует другой, вероятно, более эффективный способ снижения потерь в магистральных и межконтинентальных линиях электропередачи: разработать регулируемые резонансные волноводные системы передачи электрической энергии на повышенной частоте 1‑100 кГц, которые не используют активный ток проводимости в замкнутой цепи. В волноводной однопроводниковой линии нет замкнутого контура, нет бегущих волн тока и напряжения, а есть стоячие (стационарные) волны реактивного емкостного тока и напряжения со сдвигом фаз 90º. За счет настройки резонансных режимов, выбора частоты тока в зависимости от длины линии можно создать в линии режим пучности напряжения и узла тока (например, для полуволновой линии). При этом из‑за отсутствия активного тока, сдвига фаз между стоячими волнами реактивного тока и напряжения 90º и наличия узла тока в линии отпадает необходимость и потребность в создании в такой линии режима высокотемпературной проводимости, а джоулевы потери становятся незначительными в связи с отсутствием замкнутых активных токов проводимости в линии и незначительными величинами незамкнутого емкостного тока вблизи узлов стационарных волн тока в линии.

Новая физика электрических процессов, связанная с использованием не активного, а реактивного тока, позволит решить три главные проблемы современной электроэнергетики:

• создание сверхдальних линий передачи с низкими потерями без использования технологии сверхпроводимости;

• увеличение пропускной способности линий;

• замена воздушных линий на кабельные однопроводниковые волноводные линии и снижение сечения токонесущей жилы кабеля в двадцать-пятьдесят раз.

В экспериментальной резонансной однопроводниковой системе передачи электрической энергии, установленной в экспериментальном зале ВИЭСХа, мы передавали электрическую мощность 20 кВт при напряжении 6,8 кВ на расстояние 6 м по медному проводнику диаметром 80 мкм при комнатной температуре, при этом эффективная плотность тока в проводнике составила 600 А / мм2, а эффективная плотность мощности – 4 МВт / мм2.

Из других применений резонансной электроэнергетики, основанной на незамкнутых токах, следует выделить бесконтактный высокочастотный электротранспорт, создание местных энергетических систем с использованием возобновляемых источников энергии, соединение офшорных морских ВЭС с береговыми подстанциями, электроснабжение потребителей на островах и в зонах вечной мерзлоты, пожаробезопасные однопроводниковые системы уличного освещения и освещения зданий и пожароопасных производств.

Для сомневающихся в существовании незамкнутых электрических токов приводим высказывания двух выдающихся ученых в области электротехники и электроэнергетики.

«Исключительная трудность согласования законов электромагнетизма с существованием незамкнутых электрических токов – одна из причин среди многих, почему мы должны допустить существование токов, создаваемых изменением смещения» (Д. Максвелл).

«В 1893 году я показал, что нет необходимости использовать два проводника для передачи электрической энергии… Передача энергии через одиночный проводник без возврата была обоснована практически». «Эффективность передачи может быть 96 или 97 процентов, и практически нет потерь… Когда нет приемника, нет нигде потребления энергии».

«Мои эксперименты показали, что на поддержание электрических колебаний по всей планете потребуется несколько лошадиных сил» (Н. Тесла).

Н. Тесла ответил и на вопрос, который часто задают нам: почему электроэнергетика не восприняла его идеи? «Мой проект сдерживался законами природы. Мир не был готов к нему. Он слишком обогнал время. Но те же самые законы восторжествуют в конце и осуществят его с великим триумфом», – писал он.

Солнечная энергетика нуждается в поддержке государства для реализации пилотных и демонстрационных проектов, ждет частный капитал и нового Моргана, банкира, который сто лет назад финансировал работы Н. Теслы.

Динамично развивающаяся солнечная энергетика, основанная на инновационных российских и мировых технологиях, является альтернативой топливной энергетике. По прогнозам экспертов, в 2050 году она будет доминировать на рынке энергетически чистых технологий, а к концу XXI века обеспечит 75‑90 процентов всех потребностей Земли в электрической энергии.

 

Дмитрий СТРЕБКОВ, директор Всероссийского института электрификации сельского хозяйства

 

 


 


Поделиться:

Дата добавления: 2015-04-16; просмотров: 193; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты