![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
ВыпрямителиРазличают неуправляемые и управляемые выпрямители. Для построения неуправляемых выпрямителей применяют полупроводниковые диоды, а для построения управляемых - тиристоры. Схема простейшего однополупериодного выпрямителя приведена на рис. 13.1а. На рис. 13.1б приведены соответствующие этой схеме эпюры напряжения и тока.
В состав схемы входят: источник синусоидального напряжения
i(t) =
Этот ток создает на сопротивлении
Рис.13.1в наглядно показывает, что период пульсаций выпрямленного напряжения Т равен периоду входного напряжения. Значит и частота пульсаций ![]()
Определим интегральные параметры выпрямленного напряжения. Среднее значение тока
Аналогично
Действующее значение выпрямленного тока
Соответственно
Для оценки качества выпрямленного напряжения применяют специальный параметр - коэффициент пульсаций - Кп. Он определяется отношением амплитуды первой гармоники выпрямленного напряжения (пульсаций) -
Разложение в ряд Фурье функции, представленной рис.13.1в имеет вид
В этом разложении первый член - постоянная составляющая - среднее значение выпрямленного напряжения, а амплитуда первой гармоники
Следовательно
Таким образом, рассмотренная схема однополупериодного выпрямителя позволяет получить малые значения среднего и действующего токов и напряжений и обладает большим значением пульсаций - Кп = 1,57. Значительно лучшими параметрами обладает схема двухполупериодного выпрямителя, разработанная в 1901 г. академиком Миткевичем (рис.13.2а). В состав схемы входят: источник синусоидального напряжения, трансформатор с выводом от средней точки вторичной обмотки, два диода и сопротивление нагрузки - RH . Сопротивление нагрузки включено между катодами диодов и средней точкой вторичной обмотки.
На интервале времени от 0 до Т/2 (рис.13.2б) полярность напряжения на вторичной обмотке трансформатора такая, как показано на рис.13.2а. К диоду Д1 приложено прямое напряжение, а к диоду Д2 - обратное. В цепи вторичной обмотки потечет ток i1 от точки 1, через диод Д1, сопротивление RH к средней точке вторичной обмотки. Этот ток создаст падение напряжения (пульсацию) на интервале положительного полупериода входного напряжения. На интервале от Т/2 до Т (отрицательный полупериод) полярность напряжения на вторичной обмотке трансформатора изменится на противоположную. Теперь к диоду Д2 приложено прямое напряжение, а к диоду Д1 - обратное. В цепи вторичной обмотки потечет ток i2 от точки 1', через диод Д2, сопротивление RH к средней точке вторичной обмотки. Направление тока через RH осталось таким же и во время положительного полупериода. Поэтому этот ток создаст падение напряжения (пульсацию) на интервале отрицательного полупериода. Именно поэтому рассматриваемый выпрямитель часто называют двухполупериодным. Рис.13.2в наглядно показывает, что период пульсаций выпрямленного напряжения Тп в два раза меньше периода входного напряжения. Следовательно
где
Выражения показывают, что схема Миткевича имеет значительно лучшие параметры, чем однополупериодный выпрямитель. Однако применение трансформатора с выводом от средней точки вторичной обмотки не всегда приемлемо. Свободна от этого недостатка схема мостового выпрямителя (рис.13.3). Схема включает в свой состав источник напряжения u(t), четыре диода и сопротивление нагрузки RH, которое включено в диагональ моста. Пусть во время положительного полупериода входного напряжения полярность контактов 1 - 1' такая, как показано на рис. 13.3. В этом случае к диодам Д1 и Д4 приложено прямое напряжение, а к диодам Д2 и Д3 - обратное. В цепи выпрямителя потечет ток i1 от контакта 1, через диод Д1, сопротивление нагрузки RH, диод Д4, к контакту 1'. Этот ток создаст на сопротивлении нагрузки падение напряжения (пульсацию) на интервале положительного полупериода входного напряжения (см.рис.13.2в).
Сопоставление параметров одно и двухполупериодных выпрямителей позволяет установить связь между значениями кратности пульсаций m и коэффициента пульсаций Кп. Так для однополупериодного выпрямителя m = 1, а Кп = 1,57. Для двухполупериодного выпрямителя m = 2, а Кп = 0,67. Учитывая, что коэффициент пульсаций определяется средним значением выпрямленного напряжения U0, найдем зависимость
Заменим оператор интегрирования dt на dwt. Тогда период Т нужно заменить на 2p. Теперь
Полученное решение показывает, что для увеличения среднего значения выпрямленного напряжения U0 (а значит для уменьшения Кп) нужно увеличивать кратность пульсаций m. Значение m>2 можно получить в многофазных выпрямителях. На рис. 13.4 приведена схема трехфазного однополупериодного выпрямителя. В ее состав входят трехфазный трансформатор, три диода и сопротивление нагрузки Rн. Каждая фаза вторичной обмотки трансформатора включена на общую нагрузку и соответствующий диод. Поэтому каждый диод открывается во время положительной полуволны своей фазы. Огибающая выпрямленного напряжения представляет три пульсации на интервале одного периода входного напряжения, т.е. m = 3, а
Более эффективна мостовая схема трехфазного выпрямителя (рис.13.5). В этой схеме каждая пара диодов входит в состав двух мостов. Поэтому шесть диодов образуют три мостовые схемы для трех фаз. Огибающая выпрямленного напряжения содержит шесть пульсаций на интервале одного периода, т.е. m = 6, а
|