Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Туннельный эффект




Читайте также:
  1. ECR (Efficient Customer Response) - Эффективное взаимодействие с потребителем
  2. III Обоснование экономической эффективности
  3. III. ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОСТИ ПРОИЗВОДСТВА
  4. III. Первоочередные виды работ по энергосбережению и повышению энергетической эффективности
  5. IY этап. Оценка эффективности социальной реабилитации семьи
  6. VI. Педагогические технологии на основе эффективности управления и организации учебного процесса
  7. VII этап. Формирование эффективных условий привлечения кредитов
  8. Автотрансформаторы, схемы включения обмоток, энергетическая эффективность.
  9. Аддитивные модели эффективности
  10. Анализ безубыточности при оценке эффективности инвестиционных проектов

Факультет физико-математических и компьютерных наук

Кафедра электроники телекоммуникаций и компьютерных технологий

КУРСОВАЯ РАБОТА

по дисциплине «Физические основы электроники и электротехники»

на тему:

 

«Эффект туннелирования в электронике»

Выполнил:

Студент группы ИС-2

Черных Ярослав Владиславович

(подпись)___________________

 

Проверил:

к.п.н., доцент

Мицук Сергей Васильевич

 

 

Липецк 2014

Содержание

 

 

1. Туннельный эффект. 3

2.1. КОНТАКТ МЕТАЛЛ-МЕТАЛЛ.. 6

2.2. СТРУКТУРА МЕТАЛЛ-ДИЭЛЕКТРИК-МЕТАЛЛ.. 10

2.3. ТОКОПЕРЕНОС В ТОНКИХ ПЛЁНКАХ.. 13

2.4. ТУННЕЛЬНЫЙ ПРОБОЙ В p-n-ПЕРЕХОДЕ.. 16

2.5. ЭФФЕКТЫ ДЖОЗЕФСОНА.. 18

2.6. ЭФФЕКТ ФРАНЦА-КЕЛДЫША.. 21

3. ТУННЕЛЬНЫЙ ДИОД.. 23

ЛИТЕРАТУРА.. 29

 


Туннельный эффект

Рассмотрим поведение частицы при прохождении через потенциальный барьер. Пусть частица, движущаяся слева направо, встречает на своём пути потенциальный барьер высоты U0 и ширины l (рис. 1.1). По классическим представлениям движение частицы будет таким:

- если энергия частицы будет больше высоты барьера (E>U0), то частица беспрепятственно проходит над барьером;

- если же энергия частицы будет меньше высоты барьера (E<U0), то частица отражается и летит в обратную сторону; сквозь барьер частица проникнуть не может.

Совершенно иначе поведение частицы по законам квантовой механики. Во-первых, даже при E>U0 имеется отличная от нуля вероятность того, что частица отразится от потенциального барьера и полетит обратно. Во-вторых, при E<U0 имеется вероятность того, что частица проникнет «сквозь» барьер и окажется в области III. Такое поведение частицы описывается уравнением Шрёдингера:

. (1.1)

Здесь - волновая функция микрочастицы. Уравнение Шрёдингера для области I и III будет одинаковым. Поэтому ограничимся рассмотрением областей I и II. Итак, уравнение Шрёдингера для области I примет вид:

, (1.2)

введя обозначение:

, (1.4)

окончательно получим:

(1.5).

Аналогично для области II:

, (1.6)

где . Таким образом, мы получили характеристические уравнения, общие решения которых имеют вид:



при x<0, (1.7)

при x>0 (1.8)

Слагаемое соответствует волне, распространяющейся в области I в направлении оси х, А1- амплитуда этой волны. Слагаемое соответствует волне, распространяющейся в области I в направлении, противоположном х. Это волна, отражённая от барьера, В1- амплитуда этой волны. Так как вероятность нахождения микрочастицы в том или ином месте пространства пропорциональна квадрату амплитуды волны де Бройля, то отношение представляет собой коэффициент отражения микрочастицы от барьера.

Слагаемое соответствует волне, распространяющейся в области II в направлении х. Квадрат амплитуды этой волны отражает вероятность проникновения микрочастицы в область II. Отношение представляет собой коэффициент прозрачности барьера.

Слагаемое должно соответствовать отражённой волне, распространяющейся в области II. Так как такой волны нет, то В2 следует положить равным нулю.

Для барьера, высота которого U>E, волновой вектор k2 является мнимым. Положим его равным ik, где является действительным числом. Тогда волновые функции и приобретут следующий вид:

(1.9)

(1.10)

Так как , то это значит, что имеется вероятность проникновения микрочастицы на некоторую глубину во вторую область. Эта вероятность пропорциональна квадрату модуля волновой функции :



. (1.11)

Наличие этой вероятности делает возможным прохождение микрочастиц сквозь потенциальный барьер конечной толщины l (рис. 1.1). Такое просачивание получило название туннельного эффекта. По формуле (1.11) коэффициент прозрачности такого барьера будет равен:

, (1.12)

где D0 – коэффициент пропорциональности, зависящий от формы барьера. Особенностью туннельного эффекта является то, что при туннельном просачивании сквозь потенциальный барьер энергия микрочастиц не меняется: они покидают барьер с той же энергией, с какой в него входят.

Туннельный эффект играет большую роль в электронных приборах. Он обуславливает протекание таких явлений, как эмиссия электронов под действием сильного поля, прохождение тока через диэлектрические плёнки, пробой p-n перехода; на его основе созданы туннельные диоды, разрабатываются активные плёночные элементы.

 

2.


Дата добавления: 2015-04-16; просмотров: 10; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.025 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты