КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Туннельный эффектСтр 1 из 7Следующая ⇒ Факультет физико-математических и компьютерных наук Кафедра электроники телекоммуникаций и компьютерных технологий КУРСОВАЯ РАБОТА по дисциплине «Физические основы электроники и электротехники» на тему:
«Эффект туннелирования в электронике» Выполнил: Студент группы ИС-2 Черных Ярослав Владиславович (подпись)___________________
Проверил: к.п.н., доцент Мицук Сергей Васильевич
Липецк 2014 Содержание
1. Туннельный эффект. 3 2.1. КОНТАКТ МЕТАЛЛ-МЕТАЛЛ.. 6 2.2. СТРУКТУРА МЕТАЛЛ-ДИЭЛЕКТРИК-МЕТАЛЛ.. 10 2.3. ТОКОПЕРЕНОС В ТОНКИХ ПЛЁНКАХ.. 13 2.4. ТУННЕЛЬНЫЙ ПРОБОЙ В p-n-ПЕРЕХОДЕ.. 16 2.5. ЭФФЕКТЫ ДЖОЗЕФСОНА.. 18 2.6. ЭФФЕКТ ФРАНЦА-КЕЛДЫША.. 21 3. ТУННЕЛЬНЫЙ ДИОД.. 23 ЛИТЕРАТУРА.. 29
Туннельный эффект
Рассмотрим поведение частицы при прохождении через потенциальный барьер. Пусть частица, движущаяся слева направо, встречает на своём пути потенциальный барьер высоты U0 и ширины l (рис. 1.1). По классическим представлениям движение частицы будет таким: - если энергия частицы будет больше высоты барьера (E>U0), то частица беспрепятственно проходит над барьером; - если же энергия частицы будет меньше высоты барьера (E<U0), то частица отражается и летит в обратную сторону; сквозь барьер частица проникнуть не может. Совершенно иначе поведение частицы по законам квантовой механики. Во-первых, даже при E>U0 имеется отличная от нуля вероятность того, что частица отразится от потенциального барьера и полетит обратно. Во-вторых, при E<U0 имеется вероятность того, что частица проникнет «сквозь» барьер и окажется в области III. Такое поведение частицы описывается уравнением Шрёдингера: . (1.1) Здесь - волновая функция микрочастицы. Уравнение Шрёдингера для области I и III будет одинаковым. Поэтому ограничимся рассмотрением областей I и II. Итак, уравнение Шрёдингера для области I примет вид: , (1.2) введя обозначение: , (1.4) окончательно получим: (1.5). Аналогично для области II: , (1.6) где . Таким образом, мы получили характеристические уравнения, общие решения которых имеют вид: при x<0, (1.7) при x>0 (1.8) Слагаемое соответствует волне, распространяющейся в области I в направлении оси х, А1- амплитуда этой волны. Слагаемое соответствует волне, распространяющейся в области I в направлении, противоположном х. Это волна, отражённая от барьера, В1- амплитуда этой волны. Так как вероятность нахождения микрочастицы в том или ином месте пространства пропорциональна квадрату амплитуды волны де Бройля, то отношение представляет собой коэффициент отражения микрочастицы от барьера. Слагаемое соответствует волне, распространяющейся в области II в направлении х. Квадрат амплитуды этой волны отражает вероятность проникновения микрочастицы в область II. Отношение представляет собой коэффициент прозрачности барьера. Слагаемое должно соответствовать отражённой волне, распространяющейся в области II. Так как такой волны нет, то В2 следует положить равным нулю. Для барьера, высота которого U>E, волновой вектор k2 является мнимым. Положим его равным ik, где является действительным числом. Тогда волновые функции и приобретут следующий вид: (1.9) (1.10) Так как , то это значит, что имеется вероятность проникновения микрочастицы на некоторую глубину во вторую область. Эта вероятность пропорциональна квадрату модуля волновой функции : . (1.11) Наличие этой вероятности делает возможным прохождение микрочастиц сквозь потенциальный барьер конечной толщины l (рис. 1.1). Такое просачивание получило название туннельного эффекта. По формуле (1.11) коэффициент прозрачности такого барьера будет равен: , (1.12) где D0 – коэффициент пропорциональности, зависящий от формы барьера. Особенностью туннельного эффекта является то, что при туннельном просачивании сквозь потенциальный барьер энергия микрочастиц не меняется: они покидают барьер с той же энергией, с какой в него входят. Туннельный эффект играет большую роль в электронных приборах. Он обуславливает протекание таких явлений, как эмиссия электронов под действием сильного поля, прохождение тока через диэлектрические плёнки, пробой p-n перехода; на его основе созданы туннельные диоды, разрабатываются активные плёночные элементы.
2.
|