КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
ТУННЕЛЬНЫЙ ДИОД
Предложенный в 1958 г. японским учёным Л. Ёсаки туннельный диод изго- товляется из германия или арсенида галлия с высокой концентрацией примесей (1019 — 1020 см-3 ), т. е. с очень малым удельным сопротивлением, в сотни или тысячи раз меньшим, чем в обычных диодах. Такие полупроводники с малым сопротивлением называют вырожденными. Электронно-дырочный переход в вырожденном полупроводнике получается в десятки раз тоньше (10-6 см), чем в обычных диодах, а потенциальный барьер примерно в два раза выше. В обычных полупроводниковых диодах высота потенциального барьера равна примерно поло- вине ширины запрещённой зоны, а в туннельных диодах она несколько больше этой ширины. Вследствие малой толщины перехода напряженность поля в нём даже при отсутствии внешнего напряжения достигает 106 В/см.
Процессы в туннельном диоде удобно рассматривать на энергетических диаграммах, показывающих уровни энергии валентной зоны и зоны проводимости- в n- и р-областях. Вследствие возникновения контактной разности потенциалов в n-р-переходе границы всех зон в одной из областей сдвинуты относительно соответствующих зон другой области на высоту потенциального барьера, выраженную в электрон-вольтах.
На рис.3.1-3.4 с помощью энергетических диаграмм изображено возникновение туннельных токов в электронно-дырочном переходе туннельного диода. Для того чтобы не усложнять рассмотрение туннельного эффекта, диффузионный ток и ток проводимости на этом рисунке не показаны. Диаграмма рис. 3.1 соответствует отсутствию внешнего напряжения. Высота потенциального барьера взята для примера 0,8 эВ, а ширина запрещенной зоны составляет 0,6 эВ.
| | |
Горизонтальными линиями в зоне проводимости и в валентной зоне показаны энергетические уровни, полностью или частично занятые электронами. В валентной зоне и зоне проводимости изображены также незаштрихованные горизонтальными линиями участки, которые соответствуют уровням энергии, не занятым электронами. Как видно, в зоне проводимости полупроводника n-типа и в валентной зоне полупроводника р-типа имеются занятые электронами уровни, соответствующие одинаковым энергиям. Поэтому может происходить туннельный переход электронов из области n в область р (прямой туннельный ток iпр) и из области р в область n (обратный туннельный ток iобр). Эти два тока одинаковы по значению, и результирующий ток равен нулю.
На рис. 3.2 показана диаграмма при прямом напряжении 0,1 В, за счёт которого высота потенциального барьера понизилась на 0,1 эВ и составляет 0,7 эВ. В этом случае туннельный переход электронов из области n в область р усиливается, так как в области р имеются в валентной зоне свободные уровни, соответствующие таким же энергиям, как энергии уровней, занятых электронами в зоне проводимости области n. А переход электронов из валентной зоны области р в область n невозможен, так как уровни, занятые электронами в валентной зоне области р, соответствуют в области n энергетическим уровням запрещённой- зоны. Обратный туннельный ток отсутствует, и результирующий туннельный ток достигает максимума. В промежуточных случаях, например когда Uпр=0,05В, существуют и прямой и обратный туннельный токи, но обратный ток меньше прямого. Результирующим будет прямой ток, но он меньше максимального,
получающегося при Uпр= 0,1 В.
Случай, показанный на рис. 3.3 соответствует Uпр= 0,2 В, когда высота потенциального барьера стала 0,6 эВ. При этом напряжении туннельный переход невозможен, так как уровням, занятым электронами в данной области, соответствуют в другой области энергетические уровни, находящиеся в запрещённой зоне. Туннельный ток равен нулю. Он отсутствует также и при большем прямом напряжении. Следует помнить, что при возрастании прямого напряжения увеличивается прямой диффузионный ток диода. При рассмотрен- ных значениях Uпр=0,2 В диффузионный ток гораздо меньше туннельного тока, а при Uпр>0,2 В диффузионный ток возрастает и достигает значений, характерных для прямо го тока обычного диода.
На рис. 3.4 рассмотрен случай, когда обратное напряжение Uобр=0,2В. Высота потенциального барьера стала 1 эВ, и значительно увеличилось число уровней, занятых электронами в валентной зоне р-области и соответствуют их свободным уровням в зоне проводимости n-области. Поэтому резко возрастает обратный туннельный ток, который получается такого же порядка, как и ток при прямом напряжении.
Вольт-амперная характеристика туннельного диода (рис. 3.5) поясняет рас- смотренные диаграммы. Как видно, при U=0 ток равен нулю. Увеличение прямого напряжения до 0,1 В дает возрастание прямого туннельного тока до максимума (точка А). Дальнейшее увеличение прямого напряжения до 0,2 В сопровождается уменьшением туннельного тока. Поэтому в точке Б получается минимум тока и характеристика имеет падающий участокАБ, для которого характерно отрицательное сопротивление переменному току:
(3.1)
После этого участка ток снова возрастает за счет прямого диффузионного тока. Обратный ток получается такой же, как прямой, т. е. вo много раз больше, нежели у обычных диодов.
Туннельны диоды могут примкнятся в технике СВЧ, а также во многих импульсных радиоэлектронных устройствах, рассчитанных на высокое быстродействие. Помимо весьма малой инерционности достоинством туннельных диодов является их стойкость к ионизирующему излучению. Малое потребление энерги от источника питания также во многих случаях следует считать достоинством туннельных диодов. К сожелению, эксплутация этих диодов выявила существенный их недостаток. Он заключается в том, что эти иоды подвержены значительному старению, то есть с течением времени их характеристики и параметры заметно изменяются, что может привести к нарушению нормальной работы того или иного устройства.
Все туннельные диоды имеют весьма малые размеры. Например, они могут быть оформлены в целиндрических герметичных малостеклянных корпусах диаметром 3 – 4 мм и высотой около 2 мм. Выводы у них гибкие ленточные. Масса не превышает 0,15 г.
ЛИТЕРАТУРА
1. И.В. Боднарь, Л.Г. Березуцкий «Методическое пособие к лабораторным работам по курсу ФХОМКиТ РЭС и ЭВС». Мн.; БГУИР, 1997 г.
2. И.В. Боднарь, Л.Г. Березуцкий «Методическое пособие для самостоятельной работы студентов по курсу ФХОМКиТ РЭС и ЭВС. Раздел «Контактные явления»». Мн.; БГУИР, 1998 г.
3. Г.И. Епифанов, Ю.А. Мома «Физические основы конструирования и технологии РЭА и ЭВА». М.; «Советское радио», 1979 г.
4. И.П. Жеребцов «Основы электроники». Ленинград, «Энергоатомиздат», 1985 г.
5. В.В. Новиков «Теоретические основы микроэлектроники». М.; «Высшая школа», 1972 г.
6. К.В. Шалимова «Физика полупроводников». М.; «Энергия», 1976 г.
7. Под редакцией Г.Г. Шишкина «Электронные приборы». М.; «Энергоатомиздат», 1989 г.
8. А.А. Штернов «Физические основы конструирования, технологии РЭА и микроэлектроники». М.; «Радио и связь», 1981 г.
|