Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Векторные диаграммы.




 

При расчете цепей переменного тока часто приходится суммировать (или вычитать) несколько однородных синусоидально изменяющихся величин одной и той же частоты ƒ, но имеющих разные амплитуды (Im , Em , Um) и начальные фазы (ψi , ψu , ψe ).

Такую задачу можно решать аналитическим путем тригонометрических преобразований или геометрически.

Геометрический метод более прост и нагляден, чем аналитический.

Синусоидальную величину (например, u = Um cos(ωt + ψu ) изображают в виде радиуса-вектора (см. рис.10), иногда просто Um или U, или вектором на комплексной плоскости, тогда между гармонической величиной и вектором на комплексной плоскости устанавливается взаимно однозначное соответствие, которое записывается в виде u→Umejt+α) = ů-комплексное мгновенное значение.

 

 

ω

Ūm

ψ

Рис.10

ψ – угол, образованный Um с осью Х в начальный момент времени, называемый начальной фазой. Вектор Um вращается в заданной плоскости вокруг точки О с постоянной угловой скоростью, равной угловой частоте ω, против часовой стрелки. Причем проекция этого вектора на ось «х» в любой момент времени и определеяет гармоническую величину Пр(Um)х = Um cos(ωt + ψu). Направление вектора не указывает направление действия напряжение (или тока и э.д.с.). Это его отличие от векторов в механике, которыми обозначаются величина и направление силы, скорости, ускорения.

Сумма двух синусоидальных величин изображается суммой векторов, изображающих отдельные слагаемые, а линейная комбинация нескольких синусоидальных величин – соответствующей линейной комбинацией векторов. Такое изображение синусоидальных величин называется векторной диаграммой. При построении векторных диаграмм один из векторов – исходный располагают произвольно, другие векторы – под соответствующими углами к исходному.

Пусть необходимо сложить две гармонические функции с одинаковым периодом, но разными начальными фазами (см.рис.11):

u1 = Um1 cos (ωt + α1) и u2 = Um2 cos (ωt + α2) .

Рис.11

По известному правилу сложения векторов можно получить вектор , изображающий сумму обеих функций u1(t) и u2(t), как геометрическую сумму векторов , изображающих эти функции. Все три векторы вращаются одновременно с угловой скоростью ω. Поэтому практически всегда изображают относительное расположение векторов и осей в момент t = 0.

Геометрическое построение, описанное выше, определяет амплитуду ОМ = Um, фазу α

Часто нужно вычислять производную или интегралы гармонических функций времени типа u(t) = Umcos(ωt + α) . Имеем

 

.

 


Поделиться:

Дата добавления: 2015-04-16; просмотров: 155; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты