Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Векторные диаграммы




Читайте также:
  1. B) Элемент диаграммы, показывающий название и маркеры данных диаграммы
  2. Алгоритм 2. Визуальный анализ диаграммы рассеяния, выявление и фиксация аномальных значений признаков, их удаление из первичных данных
  3. Анализ цепей с последовательным, параллельным и смешанным соединениями. Векторные диаграммы на комплексной плоскости. Топографическая диаграмма
  4. Ввод текста названия диаграммы
  5. Векторные диаграммы
  6. Векторные диаграммы
  7. Векторные диаграммы
  8. Векторные диаграммы синхронного генератора
  9. Векторные диаграммы.

Изображение гармонической величины в виде вектора

При расчете цепей переменного тока часто приходится суммировать (или вычитать) несколько однородных синусоидально изменяющихся величин одной и той же частоты ƒ, но имеющих разные амплитуды (Im , Em , Um) и начальные фазы (ψi , ψu , ψe ).

Такую задачу можно решать аналитическим путем тригонометрических преобразований или геометрически.

Геометрический метод более прост и нагляден, чем аналитический.

Синусоидальную величину (например, u = Um cos(ωt + ψu ) изображают в виде радиуса-вектора (см. рис.3.1), иногда просто Um или U, или вектором на комплексной плоскости Ủm – комплексная амплитуда или Ủ– комплексное действующее значение. Тогда между гармонической величиной и вектором на комплексной плоскости устанавливается взаимно однозначное соответствие, которое записывается в виде u→Umejt+α) = ů-комплексное мгновенное значение.

 

j

 

ω

m

ψ

О + Рис. 3.1

 

ψ – угол, образованный Um с осью (+) в начальный момент времени, называемый начальной фазой. Вектор Um вращается в заданной плоскости вокруг точки О с постоянной угловой скоростью, равной угловой частоте ω, против часовой стрелки. Причем проекция этого вектора на ось «х» в любой момент времени и определеяет гармоническую величину Пр(Um)+ = Um cos(ωt + ψu). Направление вектора не указывает направление действия напряжение (или тока и э.д.с.). Это его отличие от векторов в механике, которыми обозначаются величина и направление силы, скорости, ускорения.

Сумма двух синусоидальных величин изображается суммой векторов, изображающих отдельные слагаемые, а линейная комбинация нескольких синусоидальных величин – соответствующей линейной комбинацией векторов. Такое изображение синусоидальных величин называется векторной диаграммой. При построении векторных диаграмм один из векторов – исходный располагают произвольно, другие векторы – под соответствующими углами к исходному.

Пусть необходимо сложить две гармонические функции с одинаковым периодом, но разными начальными фазами (см.рис.3.2):

 

u1 = Um1 cos (ωt + α1) и u2 = Um2 cos (ωt + α2) .



Рис.3.2

По известному правилу сложения векторов можно получить вектор , изображающий сумму обеих функций u1(t) и u2(t), как геометрическую сумму векторов , изображающих эти функции. Все три векторы вращаются одновременно с угловой скоростью ω. Поэтому практически всегда изображают относительное расположение векторов и осей в момент t = 0.

Геометрическое построение, описанное выше, определяет амплитуду ОМ = Um, фазу α

Часто нужно вычислять производную или интегралы гармонических функций времени типа u(t) = Umcos(ωt + α) . Имеем

 

.


Дата добавления: 2015-04-16; просмотров: 9; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.004 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты