КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
КАВИТАЦИЯКавитация представляет собой физическое явление, возникающее в потоке при быстром течении жидкости, и оказывает влияние на энергетические и механические показатели турбин, ухудшая их с момента своего появления. Известно, что чем меньше давление, оказываемое на жидкость, тем ниже температура ее кипения. Если быстро текущая вода встречает на своем пути какое-либо препятствие, то за ним появится область пониженного давления, и если давление в этой- области будет меньше упругости водяных паров, то вода там закипит и будут образовываться пузырьки пара. По мере дальнейшего продвижения пузырьков с потоком воды в зону более высокого давления пар в них конденсируется и образуются пустоты, а при объединении их — крупные -каверны. Эти пустоты мгновенно заполняются водой и в центре их возникает гидравлический удар с давлением до нескольких тысяч атмосфер. Если пустоты смыкаются в потоке на металлической поверхности какой-либо детали или на бетоне, то последние начинают разрушаться. Кроме того, в зоне пониженного давления начинают интенсивно выделяться из воды газы (воздух), которые, попадая в смыкающиеся пузырьки пара, сильно сжимаются, вследствие чего температура газов резко повышается. Кислород же (из воздуха) при высокой температуре, активно воздействуя на металл, способствует коррозии и дополнительному его разрушению. У реактивных турбин кавитационному разрушению подвержены главным образом нижние (по потоку) поверхности лопастей рабочего колеса, его камера, а также другие части турбины, где образуется пониженное давление. У ковшовых турбин при кавитации разрушаются в первую очередь сопла. При кавитации возникает характерный шум и вибрация машины (иногда удары). Кавитация снижает КПД, пропускную способность и мощность турбин. Все это является крайне нежелательным, а в ряде случаев недопустимым. Разрушительное действие кавитации можно значительно уменьшить тщательной обработкой подверженных ей элементов турбины, а также применением для них особо стойких материалов (хроме-никелевые стали). Особое значение имеет обеспечение бескавитационных условий работы реактивных турбин. Эти условия определяются, выбором соответствующего заданному напору типа и быстроходности турбины (см. § 9.6), а также высоты отсасывания Hs, определяемой расположение ем турбины относительно уровня нижнего бьефа. Кавитация будет отсутствовать, если будет соблюдено следующее условие: (9.6) где В — барометрическое давление, м вод. ст., которое определяется расположением турбины над уровнем моря по формуле В=10,33-V./900 (10,33- атмосферное давление на уровне моря, м вод. ст., а. V — абсолютная отметка местоположения турбины над уровнем моря, м); а — коэффициент кавитации, изменяющийся в зависимости от типа турбины и их нагрузки. Обычно о определяется при испытании модели турбины. Практически считается, что кавитация будет отсутствовать, если (9.7) где k — поправочный коэффициент, вводимый при пересчете коэффициента с модели на натуру (k = 1,05÷1,1). Высоту отсасывания Hs принято отсчитывать: для вертикальных радиально-осевых турбин — от нижней плоскости направляющего аппарата; для горизонтальных радиально-осевых и поворотно-лопастных—'от наивысшей точки рабочего колеса; для вертикальных пропеллерных и поворотно-лопастных турбин — от оси разворота лопастей рабочего колеса. Высота отсасывания принимается положительной, если плоскость отсчета ее находится выше уровня воды в нижнем бьефе (см. рис. 9.10), в противном случае, когда рабочее колесо турбины находится ниже уровня нижнего бьефа,— отрицательной.
|