КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Методика расчета вентиляционной системыДля проверки правильности выполнения спроектированной системы вентиляции сотрудниками пожарной охраны выполняются аэродинамические расчеты. При проверочном расчете известны: вид и схема вентиляционной установки, характеристики всех элементов системы и параметры движения перемещаемой среды. Перед расчетом аксонометрическая схема вентиляционной установки разбивается на отдельные участки. Участком называется воздуховод, в котором диаметр или размеры сторон в прямоугольных сечениях, а также расход воздуха по всей длине остаются постоянными. Аэродинамический расчет вентиляционных систем выполняется в следующей последовательности. 1. Определяются потери давления на каждом участке системы. 2. Выбирается магистральная линия системы. 3. Производится увязка потерь давления в параллельных участках. 4. Выбирается марка вентилятора и определяются его характеристики. 5. Определяется мощность электродвигателя на привод вентилятора. Потери давления на участке ΔРуч Па, определяются по формуле:
, (2.1)
где ΔРл , ΔРм - линейные и местные потери давления на участке, Па; K1, K2 - коэффициенты, учитывающие влияние температуры перемещаемой среды на линейные и местные потери давления (приложение Д); βш - коэффициент, учитывающий шероховатость стенок воздуховода (Приложение Ж); R - удельные потери давления на l м длины воздуховода, Па/м; - длина воздуховода, м; Σξ - сумма коэффициентов местных сопротивлений на участке; Рд - динамическое давление в воздуховоде, Па.
Удельные линейные потери R, Па/м, определяются по формуле:
, (2.2)
где λ - коэффициент сопротивления трению; d - диаметр воздуховода, м; ρ - плотность перемещаемой среды, кг/м3; V - скорость движения среды, м/с. Коэффициент сопротивления трению определяется для различных воздуховодов по формуле Альтшуля:
, (2.3)
где KЭ - эквивалентная шероховатость внутренней поверхности воздуховода, м (Приложение Е); Re = Vd/υ - число Рейнольдса, здесь υ - коэффициент кинематической вязкости перемещаемой среды, м2/с. Коэффициенты местных сопротивлений на каждом участке зависят от вида и размеров элементов вентиляционной системы, а также от параметров перемещаемой среды (Приложение Л). При расчете прямоугольных воздуховодов за характерный размер принимается эквивалентный диаметр dЭ, который определяется по формуле:
, (2.4)
где а и b - размеры сторон воздуховода, м. Следует иметь в виду, что при равенстве скоростей движения воздуха в прямоугольном и эквивалентном ему круглом воздуховоде потери давления на трение равны, а расходы воздуха не совпадают. Для упорядочения и упрощения расчетов целесообразно полученные значения потерь давления на каждом участке представить в виде таблицы. По известным величинам потерь давления на каждом участке определяется магистральная линия системы, т.е. линия от забора воздуха до выброса, в которой суммарные потери на последовательно соединенных участках имеют наибольшую величину. Остальные участки, не вошедшие в магистральную линию, считаются ответвлениями. Потери давления в параллельных участках ответвлений, а также между ответвлениями и параллельными участками магистральной линии могут существенно отличаться. При этом возможно чрезмерное увеличение расхода на участках с меньшими потерями и уменьшение расхода на параллельных им участках с большими потерями, что приведет к нарушению воздухообмена в обслуживаемых ими помещениях. Поэтому расхождение потерь давления между параллельными участками допускается не более 10 %. Для обеспечения равенства потерь давления на параллельных участках производится увязка вентиляционной системы, т.е. на участках ответвлений с меньшими потерями увеличивают гидравлические сопротивления путем уменьшения диаметра воздуховодов или установки добавочного местного сопротивления в виде диафрагмы, дроссель-клапана и т.п. При расчете вентиляционных систем, обслуживающих взрывопожароопасные помещения, связанные с выделением пыли, увязку необходимо выполнять путем изменения диаметров воздуховодов. Увязку вентиляционных систем, удаляющих горючие газы и пары (особенно местных отсосов), предпочтительнее производить установкой диафрагм с острыми краями, так как в процессе эксплуатации чрезмерное открытие дроссель-клапана (нарушение увязки) может снизить расход воздуха на других участках и создать опасность взрыва или пожара. Расхождение потерь давления Δ в узловых точках соединения параллельных участков определяется по формуле:
, (2.5) где Δ Рб и Δ Рм - большие и меньшие потери давления, Па. При расхождении потерь давления больше чем на 10% необходимо произвести увязку участков. Требуемое добавочное сопротивление ξтр.м для участка с меньшими потерями давления определяется по формуле:
, (2.6) где Рд.м -динамическое давление на участке с меньшими потерями, Па. Зная требуемый добавочный коэффициент местного сопротивления, можно найти угол закрытия дроссель-клапана или диаметр отверстия диафрагмы. При выборе вентиляторов необходимо учитывать характер перемещаемой среды. При наличии в воздухе горючих газов и паров следует принимать вентиляторы взрывобезопасного исполнения, при наличии пыли - пылевые вентиляторы, для агрессивных смесей - коррозионно-стойкие и т.п. Для перемещения нормальной среды с температурой не выше 80°С и содержанием пыли не более 100 мг/м3 применяются радиальные (центробежные) или осевые вентиляторы обычного исполнения. Для общеобменных систем вентиляции с малыми потерями давления целесообразно использование осевых вентиляторов, которые обеспечивают большие расходы, но малые давления. Номера центробежных и осевых вентиляторов определяются по сводным или индивидуальным аэродинамическим графикам. Сводные графики, характеризующие параметры одной марки вентиляторов (например, ВЦ 4-75 или ВЦ 14-46) приведены в приложении М. При необходимости более точного определения для вентилятора производительности, давления, КПД и частоты вращения рабочего колеса используют индивидуальные графики. Вентилятор должен обеспечивать требуемые (расчетные) значения производительности и давления вентиляционной системы. Расчетная производительность вентилятора Lр, м3/ч, определяется с учетом подсосов или потерь воздуха в воздуховодах и общего расхода системы Lсист, м3/ч. по формулам: - при общей длине воздуховодов до 50 м:
Lp = 1,1 Lсист, (2.7)
- при общей длине воздуховодов 50 м и более:
Lp = 1,15 Lсист . (2.8)
Расчетное давление, развиваемое вентилятором Pp, Па, определяется с 10%-ным запасом по потерям в магистральной линии системы:
Рр = 1,1 ΔРмаг . (2.9)
Выбор вентиляторов производится следующим образом. По сводному аэродинамическому графику определяются вентиляторы, которые могут обеспечить требуемые расход Lр и давление Рр. Для каждого вентилятора на индивидуальном аэродинамическом графике находится точка с этими параметрами. Если эта точка расположена на "рабочей характеристике", т.е. линии, устанавливающей зависимость между производительностью и давлением при определенной частоте вращения рабочего колеса, то вентилятор обеспечивает требуемые параметры при данной частоте вращения. Если точка с параметрами Lp и Рр расположена ниже или между "рабочими характеристиками", то она переносится вертикально на вышележащую "рабочую характеристику" с большей частотой вращения и только тогда при производительности вентилятора, равной расчетному расходу системы, определяются рабочее давление Рв, КПД и частота вращения рабочего колеса вентилятора. При этом давление Рв будет превышать расчетное Рр и для увязки на участке перед или за вентилятором устанавливается добавочное сопротивление. Расчетные параметры вентиляционной системы могут обеспечивать несколько вентиляторов, поэтому при выборе предпочтение необходимо отдавать вентилятору с наибольшим КПД. Расчетная мощность Nр, кВт для привода вентилятора определяется по формуле:
, (2.10)
где ηв - КПД вентилятора; ηп - КПД передачи, принимаемый ηп = 1 при расположении рабочего колеса на валу электродвигателя; ηп = 0,98 при соединении вентилятора и электродвигателя при помощи муфты; ηп = 0,95 при клиноременной передаче. Установочная мощность электродвигателя Nу, кВт находится по формуле:
Nу = К3 Np , (2.11)
где К3 - коэффициент запаса мощности (Приложение Н).
|