Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Общая схема ферментационных процессов.




1. Сохранение инокулята (продукта). Существуют национальные коллекции, заводские коллекции.

2. Подготовка инокулята к совмещению со средой.

Масштабирование – подготовка к объему, в котором будет проходить культивация (увеличение объема инокулята). Изменение условий культивирования и эффективности процесса (изменяется при увеличении объема продукта в 10 раз)

А) 1-2 качалочные колбы.

Б) Получение спор на твердой среде.

3. Предварительная ферментация культуры. Продукционный ферментер (=биореактор).

4. Периодическая ферментация, проточная ферментация.

Ферменты являются сложными органическими соединениями, присутствующими в живых клетках, где они функционируют как катализаторы различных биохимических реакций превращений разных химических соединений. Хотя ферменты образуются только в живых клетках, многие из них могут быть выделены из клеток без потери активности и способны работать в условиях in vitro.

Ферментная технология включает продукцию, выделение, очистку, использование в растворенной форме и, наконец, применение в иммобилизованном виде ферментов в широком круге реакторных систем. Ферментная технология, вне всякого сомнения, обеспечит в будущем разрешение наиболее насущных проблем, стоящих перед обществом; например, обеспечением пищей, источниками энергии (ее сохранением и использованием с максимальной эффективностью), а также улучшением окружающей среды.

Применение ферментов.С давних пор в таких процессах, как пивоварение, изготовление хлеба и производство сыра, использовалась (хотя и не понимаемая) деятельность ферментов. В результате эмпирических совершенствований эти традиционные технологии получили широкое распространение задолго до того момента, когда сформировались научные знания о механизмах этих процессов.Свободные от клеток ферменты имеют в настоящее время широкое применение во многих химических процессах, в которых участвует большое количество последовательных реакций. Однако ферментные процессы, в которых используются в качестве катализаторов микробные клетки, характеризуются довольно большим числом ограничений:

1. Большая часть субстрата в обычных условиях превращается в микробную биомассу.

2. Наличие (или возможное появление) побочных реакций, приводящих к накоплению значительных количеств отходов.

3. Условия для роста микроорганизма могут быть иными, нежели для образования и накопления необходимого продукта.

4. Выделение и очистка необходимого продукта из культуральной жидкости могут быть сопряжены со значительными трудностями.

Многие (если не все) из этих перечисленных недостатков могут быть существенно уменьшены путем использования чистых ферментов и, по-видимому, при дальнейших совершенствованиях методов применения ферментов они будут практически решены. Большинство ферментов, используемых в промышленности, являются внеклеточными ферментами, т. е. ферментами, секретируемыми микроорганизмами во внешнюю среду. Таким образом, если микроорганизм продуцирует ферменты для расщепления больших молекул до ассимилируемых (низкомолекулярных) форм, то ферменты обычно экскретируются в окружающую (культуральную) среду. В таких случаях культуральная (ферментационная) жидкость, получаемая при выращивании микроорганизмов (например, дрожжей или мицелиальных грибов, бактерий), является основным источником протеаз, амилаз и в несколько меньшей степени целлюлаз, липаз и других гидролитических ферментов. Многие промышленные ферменты, являясь гидролазами, могут функционировать без дополнительных сложных кофакторов; они легко выделяются (сепарируются от биомассы) без разрушения клеточных стенок продуцентов и хорошо растворимы в воде. Но поскольку большинство ферментов микроорганизмов по своей природе являются внутриклеточными, то наибольший прогресс в биотехнологии может ожидаться именно при их использовании для промышленных целей. Однако в этом случае возникает необходимость разработки эффективных способов их выделения и очистки.

Среди многих новых областей и возможностей ферментной технологии существенное место отводится утилизации лигноцеллюлозы (или просто древесных материалов). Это "обильное" (с избытком имеющееся в природе) сырье должно использоваться человеком, и многие исследовательские разработки направлены на создание эффективных способов деструкции данного сложного органического соединения. Если это удастся осуществить, то биотехнологию ожидает блестящее будущее.

53. Типы и режимы ферментаций: периодические и непрерывные п-сы.

Непрерывное культивирование в одном биореакторе называется одностадийным. Многостадийное выращивание предусматривает последовательное или каскадное расположение биореакторов, позволяющее обеспечивать внедрение принципа дифференцированных режимов в непрерывные биотехнологические процессы, основанные на создании системы биореакторов.

При разработке новых биотехиологических процессов сначала прибегают к периодическому культивированию. На непрерывный режим пока еще переведено небольшое число процессов, однако перспективность его не вызывает сомнений, несмотря на более сложные конструкции аппаратов и систем контроля (иными словами, на более солидные капиталовложения).

Конечно, и периодическое культивирование еще не исчерпало своих возможностей. Пока что выбор режима (периодическое или непрерывное культивирование) подчиняется (да и будет подчиняться в дальнейшем) соображениям экономической целесообразности.

Хотя непрерывные процессы приобрели широкое практическое применение в лабораторных условиях (масштабах), лишь немногие из них используются в промышленности. Однако непрерывные процессы довольно широко практикуются в производстве одноклеточного белка; например, продукция ICI Prutin на метаноле и производство микопротеина компанией Rank Hovis McDougall.

Несколько подробнее об особенностях вышеуказанных процессов. Периодическое культивирование включает: а) стерилизацию сред и всего оборудования; б) загрузку биореактора питательной средой; в) внесение посевного материала (клеток или спор); г) выращивание культуры (это может совпадать во времени с последующим этапом или предшествовать ему); д) синтез целевого продукта; е) отделение и очистку готового продукта. Все этапы представлены во временном аспекте; после окончания последнего этапа производится мойка биореактора и подготовка его к новому циклу.

При этом типе культивирования рост клеточной популяции подразделяется на несколько фаз: 1) лаг-фаза, или фаза задержанного роста, при которой клетки растут медленно и адаптируются к новой среде обитания в объеме ферментора; 2) экспоненциальная фаза,

характеризующаяся интенсивным делением клеток и сбалансированностью роста всей популяции; 3) фаза замедленного роста, связанная с исчерпанием питательных субстратов и накоплением токсических продуктов метаболизма; 4) стационарная фаза, при которой

прирост новых клеток количественно равняется числу погибающих; 5) фаза отмирания, характеризующаяся прогрессирующей гибелью клеток.

В условиях непрерывного (проточного) культивирования в сосуд, содержащий популяцию бактерий, подается свежая питательная среда и из него одновременно удаляется часть среды с клетками микроорганиз-мов. Это позволяет на длительное время задержать культуру в состоянии кспоненциального роста. Проточное культивирование осуществляется в аппаратах (ферментерах) двух типов: хемостатах и турбидостатах. Хемостат состоит из со суда-культиватора, в который с заданной постоянной скоростью поступает питательная среда. Для равномерного и полного смешения пита-тельных веществ содержимое культиватора механически перемешивает-ся и аэрируется стерильным воздухом. Избыточная биомасса клеток с питательной средой вытекает из культиватора через сливной сифон. В хемостате прирост биомассы прямо пропорционален скорости притока субстрата и удаления продуктов метаболизма. Примером хемостата в природе служит рубец жвачных животных. Турбидостат представляет собой ферментер, в котором поддерживается заданная плотность клеток за счет определения оптической плотно-сти среды культивирования. Когда количество биомассы увеличивается относительно некоторого выбранного уровня, что фиксируется фото-элементом, соединенным с системой реле, включается подача свежей пи-тательной среды. Для глубинного культивирования бактерий с аэрацией в промыш-ленных и лабораторных условиях применяют биореакторы, или фермен-теры. Они представляют собой герметические котлы, в которые залива-ется жидкая питательная среда. Ферментеры снабжены автоматическими приспособлениями, позволяющими поддерживать постоянную темпера-туру, оптимальное значение рН и редокс-потенциал, дозированное поступление необходимых питательных веществ. Кроме того, они снабжены системами перемешивания, аэрирования, охлаждения, пеногашения. Непрерывное культивирование широко используется в промыш-ленной микробиологии, а также при проведении физиологических, био-химических и генетических исследований, так как в данных условиях наблюдается константная плотность популяции и концентрация всех компонентов питательной среды. Для изучения процессов обмена веществ на протяжении цикла кле-точного деления часто необходимо, чтобы все клетки в популяции дели-лись одновременно (синхронно). Культуры, в которых все клетки нахо-дятся на одинаковой стадии клеточного цикла и делятся одновременно, называют синхронными. Синхронизировать рост и деление клеток в ка-кой-либо популяции можно различными искусственными приемами, такими как изменение температуры, изменение интенсивности освещения (для фототрофных микроорганизмов), лимитирование количества пита-тельных веществ или фильтрование суспензии клеток микроорганизмов через специальный фильтр, позволяющий отобрать клетки одного размера. Однако в синхронизированном состоянии культура не может нахо-диться длительное время и после двух-трех генераций процесс деления клеток асинхронизируется.


Поделиться:

Дата добавления: 2015-04-16; просмотров: 366; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.015 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты