КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
ГЛАВА 7 3 страницаНеотпускающий ток — электрический ток, вызывающий при прохождении через человека непреодолимые судорожные сокращения мышц руки, в которой зажат проводник. Пороговый неотпускающий ток — это переменный ток силой 10...15 мА и постоянный — силой 50...60 мА. При таком токе человек уже не может самостоятельно разжать руку, в которой зажата токоведущая часть, и оказывается как бы прикованным к ней. Фибрилляционный ток — электрический ток, вызывающий при прохождении через организм фибрилляцию сердца. Пороговым фибрилляционным током является переменный ток силой 100 мА и постоянный — силой 300 мА при длительности действия 1...2 с по пути «рука-рука» или «рука-ноги». Фибрилляционный ток может достичь 5 А. Ток больше 5 А фибрилляцию сердца не вызывает. При таких токах происходит мгновенная остановка сердца. Продолжительность воздействия электрического тока. Существенное влияние на исход поражения оказывает длительность прохождения тока через тело человека. Продолжительное действие тока приводит к тяжелым, а иногда и смертельным поражениям. Опасность поражения током вследствие фибрилляции сердца зависит от того, с какой фазой сердечного цикла совпадает время прохождения тока через область сердца. Если длительность прохождения тока равна или превышает время кардиоцикла (0,75...1 с), то ток «встречается» со всеми фазами работы сердца (в том числе с наиболее уязвимой), что весьма опасно для организма. Если же время воздействия тока меньше 0,2 с, то вероятность совпадения момента прохождения тока с наиболее уязвимой фазой работы сердца и, следовательно, опасность поражения резко уменьшаются. Указанное обстоятельство используется при разработке быстродействующих автоматических устройств защитного отключения. Путь тока через тело человека. Путь прохождения тока через тело человека играет существенную роль в исходе поражения, так как ток может пройти через жизненно важные органы: сердце, легкие, головной мозг и др. Влияние пути тока на исход поражения определяется также сопротивлением кожи на различных участках тела. Возможных путей тока в теле человека, которые называются также петлями тока, достаточно много. Часто встречаются петли тока «рука-рука», «рука-ноги» и «нога-нога». Наиболее опасны петли «голова-руки» и «голова-ноги», но эти петли возникают относительно редко. Род и частота электрического тока. Постоянный ток примерно в 4...5 раз безопаснее переменного. Это вытекает из сопоставления пороговых ощутимых, а также неотпускающих токов для постоянного и переменного токов. Значительно меньшая опасность поражения постоянным током подтверждается и практикой эксплуатации электроустановок: случаев смертельного поражения людей током в установках постоянного тока намного меньше, чем в аналогичных установках переменного тока. Это положение справедливо лишь для напряжений до 250...300 В. При более высоких напряжениях постоянный ток более опасен, чем переменный (с частотой 50 Гц). Для переменного тока играет роль также и его частота. С увеличением частоты переменного тока полное сопротивление тела уменьшается, что приводит к увеличению тока, проходящего через человека, и следовательно повышается опасность поражения. Наибольшую опасность представляет ток с частотой от 50 до 100 Гц; при дальнейшем повышении частоты опасность поражения уменьшается и практически исчезает при частотах более 100 кГц. Эти токи сохраняют опасность ожогов. Снижение опасности поражения током с ростом частоты проявляется начиная с 5...10 кГц. Индивидуальные свойства человека. Установлено, что физически здоровые и крепкие люди легче переносят электрические удары. Повышенной восприимчивостью к электрическому току отличаются лица, страдающие болезнями кожи, сердечно-сосудистой системы, органов внутренней секреции, легких, нервными болезнями и др., что является медицинским противопоказанием для лиц, собирающихся профессионально работать с действующими электроустановками. Условия внешней среды. Состояние окружающей воздушной среды, а также окружающая обстановка могут существенным образом влиять на опасность поражения током. Сырость, токопроводящая пыль, едкие пары и газы, разрушающе действующие на изоляцию электроустановок, а также высокая температура окружающего воздуха понижают электрическое сопротивление тела человека, что еще больше увеличивает опасность поражения его током. В зависимости от наличия перечисленных условий, повышающих опасность воздействия током на человека, «Правила устройства электроустановок» делят все помещения по опасности поражения людей электрическим током на следующие классы: без повышенной опасности, с повышенной опасностью, особо опасные, а также территории размещения наружных электроустановок. Помещения без повышенной опасности характеризуются отсутствием условий, создающих повышенную или особую опасность. Помещения с повышенной опасностью характеризуются наличием в них только одного из следующих условий, создающих повышенную опасность: 1) сырости (относительная влажность воздуха длительно превышает 75%) или токопроводящей пыли; 2) токопроводящих полов (металлические, земляные, железобетонные, кирпичные и др.); 3) высокой температуры (выше+35°С); 4) возможности одновременного прикосновения человека к имеющим соединения с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т. п., с одной стороны, и металлическим корпусам электрооборудования — с другой, а также к открытым токопроводящим частям. Особо опасные помещения характеризуются наличием одного из следующих условий, создающих особую опасность: 1) особой сырости (относительная влажность воздуха близка к 100%: потолок, стены, пол и предметы в помещении покрыты влагой); 2) химически активной или органической среды (разрушающей изоляцию и токоведущие части электрооборудования); 3) одновременно двух или более условий повышенной опасности. К таким же помещениям относятся и участки работ на земле под открытым небом или под навесом. Критерии безопасности электрического тока. При проектировании, расчете и эксплуатационном контроле защитных систем руководствуются относительно безопасными значениями тока при данном пути его протекания и длительности воздействия в соответствии с ГОСТ 12.1.038-82. При длительном воздействии допустимый ток принят равным 1 мА. При продолжительности воздействия до 30 с — 6 мА. При воздействии 1с и менее значения токов приведены ниже, однако они не могут рассматриваться как обеспечивающие полную безопасность и принимаются в качестве практически допустимых с достаточно малой вероятностью поражения: Длительность воздействия, с 1,0 0,7 0,5 0,2 Ток, мА 50 70 100 250 Эти токи считаются предельно допустимыми для наиболее вероятных путей их протекания в теле человека: «рука-рука», «рука-ноги» и «нога-нога».
СИТУАЦИОННЫЙ АНАЛИЗ ПОРАЖЕНИЯ ТОКОМ Напряжение между двумя точками цепи тока, которых одновременно касается человек, называется напряжением прикосновения. Наиболее типичны два случая замыкания цепи тока через тело человека: когда человек касается одновременно двух проводов и когда он касается лишь одного провода. Применительно к сетям переменного тока первую схему обычно называют двухфазным прикосновением, а вторую — однофазным. Двухфазное прикосновение более опасно, поскольку к телу человека прикладывается наибольшее в данной сети напряжение — линейное, и поэтому через человека пойдет больший ток кроме того, ток идет по опасному для человека пути через жизненно важные органы грудной клетки. При двухфазном прикосновении ток, проходящий через человека, практически не зависит от режима нейтрали сети. Опасность прикосновения не уменьшается и в том случае, если человек будет надежно изолирован от земли. Однофазное прикосновение происходит во много раз чаще, чем двухфазное, но оно менее опасно, поскольку напряжение, под которым оказывается человек, не превышает фазного, то есть меньше линейного в 1,73 раза. Соответственно меньше оказывается и ток, проходящий через человека. Поэтому для улучшения условий безопасности персонала в помещениях с электроустановками предусматриваются изолирующие полы и применяется изолирующая обувь, изолирующие перчатки и инструмент с изолирующими ручками. Любое прикосновение к токоведущим частям в электроустановках напряжением выше 1 кВ опасно независимо от схемы питания. Поэтому здесь принимаются все меры для того, чтобы сделать токоведущие части недоступными для случайного прикосновения человека. Их располагают на недоступном расстоянии, надежно ограждают, строго регламентируют порядок доступа к электроустановке и т. д.
ОСНОВНЫЕ ПРИЧИНЫ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ Перечислим основные причины поражения электрическим током: 1. Случайное прикосновение к токоведущим частям, находящимся под напряжением в результате ошибочных действий при проведении работ; неисправности защитных средств, которыми пострадавший касался токоведущих частей и др., а также приближение на опасное расстояние к высоковольтным частям, из-за чего может произойти пробой. 2. Появление напряжения на металлических конструктивных частях электрооборудования в результате повреждения изоляции токоведущих частей; падение провода (находящегося под напряжением) на конструктивные части электрооборудования и др. 3. Появление напряжения на отключенных токоведущих частях в результате ошибочного включения установки, замыкания между отключенными и находящимися под напряжением токоведущими частями, разряда молнии в электроустановку и др. 4. Возникновение напряжения шага на участке земли, где находится человек, в результате замыкания фазы на землю, выноса потенциала протяженным токопроводящим предметом (трубопроводом, железнодорожными рельсами), неисправностей в устройстве защитного заземления и др. Напряжением шага называется напряжение между точками земли, обусловленное растеканием тока замыкания на землю при одновременном касании их ногами человека. Если человек будет находиться в зоне растекания тока, например при повреждении воздушной линии электропередачи, или нарушении изоляции силового кабеля, проложенного в земле, или при стекании тока через заземлитель, и стоять при этом на поверхности земли, имеющей разные потенциалы в местах, где расположены ступни ног. Электрический ток, протекающий через тело человека в этом случае, зависит от значения тока замыкания на землю, сопротивления основания пола и обуви, а также от расположения ступней ног. Напряжение шага может быть равным нулю, если обе ноги человека находятся на эквипотенциальной линии, то есть линии электрического поля, обладающей одинаковым потенциалом. Напряжение шага может быть уменьшено до минимума, если свести ступни ног вместе. Наибольший электрический потенциал будет в месте соприкосновения проводника с землей. По мере удаления от этого места потенциал поверхности грунта уменьшается, и на расстоянии, примерно равном 20 м, он может быть принят равным нулю. Напряжение шага всегда меньше напряжения прикосновения. Кроме того, протекание тока по нижней петле «нога-нога» менее опасно, чем по пути «рука-нога». Однако в практике немало случаев поражения людей при воздействии напряжения шага. Поражение при напряжении шага усугубляется тем, что из-за судорожных сокращений мышц ног человек может упасть, после чего цепь тока замыкается на теле через жизненно важные органы. Кроме того, рост человека обусловливает большую разность потенциалов, приложенных к его телу. Для защиты от поражения электрическим током могут применяться следующие меры: 1. Обеспечение недоступности токоведущих частей, находящихся под напряжением. 2. Устранение опасности поражения при появлении напряжения на корпусах, кожухах и других частях электрооборудования, достигаемое прежде всего техническими мерами: защитным заземлением, занулением, защитным отключением, применением малых напряжений и др. 3. Использование специальных электрозащитных средств. 4. Организация безопасной эксплуатации электроустановок. Выбор той или иной меры защиты зависит от ряда обстоятельств: от вида электрической установки, значения напряжения, характера помещения, в котором размещается электроустановка, и т. п. КОНТРОЛЬНЫЕ ВОПРОСЫ 1. Какое действие на организм человека оказывает электрический ток и в чем оно выражается? 2. Укажите, какие виды поражения производит электрический ток. 3. Укажите основные факторы, влияющие на исход поражения током. 4. От чего зависит электрическое сопротивление тела человека? 5. Что является основным фактором, определяющим исход поражения током? 6. Укажите пороговые значения ощутимого, неотпускающего и фибрилля-ционного токов. Какое значение тока принимается за смертельное? 7. На какие классы по опасности поражения током делятся помещения? Охарактеризуйте каждый класс. 8. Какая схема включения человека в цепь тока является наиболее опасной и почему? 9. Какая сеть является более опасной при однофазном прикосновении — с изолированной нейтралью или с заземленной нейтралью — и по какой причине? 10. Укажите основные причины поражения током. 11. Что такое напряжение прикосновения и напряжение шага? Как должен вести себя человек в зоне стекания тока в землю, чтобы уменьшить опасность? §7.5. СТАТИЧЕСКОЕ ЭЛЕКТРИЧЕСТВО ВОЗНИКНОВЕНИЕ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА Под статическим электричеством понимают совокупность явлений, связанных с возникновением и релаксацией свободного электрического заряда на поверхности или в объеме диэлектриков либо на изолированных проводниках. Образование и накопление зарядов на перерабатываемом материале связано с двумя условиями. Во-первых, должен произойти контакт поверхностей, в результате которого образуется двойной электрический слой. Во-вторых, хотя бы одна из контактирующих поверхностей должна быть из диэлектрического материала. Заряды будут оставаться на поверхностях после их разделения только в том случае, если время разрушения контакта меньше времени релаксации зарядов. Последнее в значительной степени определяет величину зарядов на разделенных поверхностях. Двойной электрический слой — это пространственное распределение электрических зарядов на границах соприкосновения двух фаз. Такое распределение зарядов наблюдается на границе металл-металл, металл-вакуум, металл-газ, металл-полупроводник, металл-диэлектрик, диэлектрик-диэлектрик, жидкость-твердое тело, жидкость-жидкость, жидкость-газ. Толщина двойного электрического слоя на границе раздела двух фаз соответствует диаметру иона (10~10 м). Основная величина, характеризующая способность к электризации — удельное электрическое сопротивление поверхностей контактирующих материалов. Если контактирующие поверхности имеют низкое сопротивление, то при разделении заряды с них стекают, и раздельные поверхности несут незначительный заряд. Если же сопротивление высокое или велика скорость отрыва поверхностей, то заряды будут сохраняться. Следовательно, основные факторы, влияющие на электризацию веществ, — их электрофизические параметры и скорость разделения. Экспериментально установлено, что чем интенсивнее ведется процесс (чем выше скорость отрыва), тем больший заряд остается на поверхности. Условно принято, что при удельном электрическом сопротивлении материалов менее 105 Ом заряды не сохраняются и материалы не электризуются. Опытами установлено, что при соприкосновении (трении) двух диэлектриков тот из них, который имеет большее значение диэлектрической постоянной, заряжается положительно, в то время как материал с меньшей диэлектрической постоянной заряжается отрицательно. ОПАСНОСТЬ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА Опасность, создаваемая электризацией различных материалов, состоит в возможности искрового разряда как с диэлектрической наэлектризованной поверхности, так и с изолированного проводящего объекта. Вредное воздействие оказывает на человека статическое электричество, возникающее при ношении одежды из синтетических материалов и при контакте с наэлектризованными поверхностями (например, клавиатура компьютера). Разряд статического электричества возникает тогда, когда напряженность электрического поля над поверхностью диэлектрика или проводника, обусловленная накоплением на них зарядов, достигает критической (пробивной) величины. Для воздуха эта величина составляет примерно 30 кВ/м. Воспламенение горючих смесей искровыми разрядами статического электричества произойдет, если выделяющаяся в разряде энергия будет больше энергии, воспламеняющей горючую смесь, или, в общем случае, выше минимальной энергии зажигания горючей смеси. Энергию разряда с заряженной диэлектрической поверхности можно определить только экспериментально. Минимальная энергия зажигания горючих смесей зависит от природы веществ и также определяется экспериментально. В ряде случаев статическая электризация тела человека и затем последующие разряды с человека на землю или заземленное производственное оборудование, а также электрический разряд с незаземленного объекта через тело человека на землю могут вызвать нежелательные болевые и нервные ощущения и быть причиной непроизвольного резкого движения человека, в результате которого человек может получить ту или иную механическую травму. КОНТРОЛЬНЫЕ ВОПРОСЫ 1. Каким образом возникают статические заряды? От чего зависит знак заряда? 2. В чем состоит опасность статического электричества? 3. Чем определяется энергия статических зарядов? 4. Как обеспечивается электростатическая искробезопасность объектов? 5. К каким последствиям может привести статическая электризация тела человека? 6. Какие меры защиты можно использовать для устранения опасности возникновения электростатических зарядов?
§7.6. ЛАЗЕРНОЕ ИЗЛУЧЕНИЕ Лазерное излучение является электромагнитным излучением, генерируемым в диапазоне длин волн X = 0,2...1000 мкм. Лазеры широко применяются в микроэлектронике, биологии, метрологии, медицине, геодезии, связи, спектроскопии, голографии, вычислительной технике, в исследованиях по термоядерному синтезу и во многих других областях науки и техники. Лазеры бывают импульсного и непрерывного излучения. Импульсное излучение — это излучение с длительностью импульса не более 0,25 с, непрерывное излучение — с длительностью 0,25 с или более. Промышленностью выпускаются твердотельные, газовые и жидкостные лазеры. Лазерное излучение характеризуется монохроматичностью, высокой когерентностью, чрезвычайно малой энергетической расходимостью луча и высокой энергетической освещенностью. Энергетическая освещенность (облученность) (Вт/см2) — это отношение мощности потока излучения, падающего на малый участок облучаемой поверхности, к площади этого участка. Энергетическая экспозиция (Дж/см2) — это отношение энергии излучения, падающей на рассматриваемый участок, к площади этого участка. Иными словами, это произведение энергетической освещенности (облученности) (Вт/см2) на длительность облучения (с). Энергетическая освещенность лазерного луча достигает 1012... 1013 Вт/см2. Этой энергии оказывается достаточно для плавления и даже испарения самых тугоплавких веществ. Для сравнения укажем, что на поверхности Солнца плотность мощности излучения равна 108 Вт/см2. Лазерное излучение сопровождается мощным электромагнитным полем. Поэтому при таких значениях напряженности поля в облучаемом лазерным лучом веществе возможны проявления как чисто электрических, так и химических эффектов, приводящих к ослаблению связей между молекулами, их поляризации, вплоть до ионизации молекул облучаемого вещества. Таким образом, лазерное излучение, безусловно, представляет опасность для человека. Наиболее опасно оно для органов зрения. Практически на всех длинах волн лазерное излучение проникает свободно внутрь глаза. Лучи света, прежде чем достигнуть сетчатки глаза, проходят через несколько преломляющих сред: роговую оболочку, хрусталик и, наконец, стекловидное тело. Наиболее чувствительна к вредному воздействию лазерного облучения сетчатка. В результате фокусирования на малых участках сетчатки могут концентрироваться плотности энергии в сотни и тысячи раз больше той, которая падает на переднюю поверхность роговицы глаза. Энергия лазерного излучения, поглощенная внутри глаза, преобразуется в тепловую энергию. Нагревание может вызвать различные повреждения и разрушения глаза. Ткани живого организма при малых и средних интенсивностях облучения почти непроницаемы для лазерного излучения. Поэтому поверхностные (кожные) покровы оказываются наиболее подверженными его воздействию. Степень этого воздействия определяется, с одной стороны, параметрами самого излучения: чем выше интенсивность излучения и чем длиннее его волна, тем сильнее воздействие; с другой стороны, на исход поражения кожи влияет степень ее пигментации. Пигмент кожи является как бы своеобразным экраном на пути излучения в расположенные под кожей ткани и органы. При больших интенсивностях лазерного облучения возможны повреждения не только кожи, но и внутренних тканей и органов. Эти повреждения имеют характер отеков, кровоизлияний, омертвения тканей, а также свертывания или распада крови. В таких случаях повреждения кожи оказываются относительно менее выраженными, чем изменения во внутренних тканях, а в жировых тканях вообще не отмечается каких-либо патологических изменений. Рассмотренные возможные вредные последствия от воздействия лазерного излучения относятся к случаям прямого облучения вследствие грубых нарушений правил безопасного обслуживания лазерных установок. Рассеянно или тем более концентрированно отраженное излучение малой интенсивности воздействует значительно чаще, результатом могут быть различные функциональные нарушения в организме — в первую очередь, в нервной и сердечно-сосудистой системах. Эти нарушения проявляются в неустойчивости артериального давления крови, повышенной потливости, раздражительности и т. п. Лица, работающие в условиях воздействия лазерного отраженного излучения повышенной интенсивности, жалуются на головные боли, повышенную утомляемость, неспокойный сон, чувство усталости и боли в глазах. Как правило, эти неприятные ощущения проходят без специального лечения после упорядочения режима труда и отдыха и принятия соответствующих защитных профилактических мер. Нормирование лазерного излучения осуществляется по предельно допустимым уровням облучения (ПДУ). Это уровни лазерного облучения, которые при ежедневной работе не вызывают у работающих заболеваний и отклонений в состоянии здоровья. Согласно «Санитарным нормам и правилам устройства и эксплуатации лазеров» (СанПин5804-91) ПДУ лазерного излучения определяются энергетической экспозицией облучаемых тканей (Дж/см2). Биологические эффекты, возникающие при воздействии лазерного излучения на организм, можно разделить на две группы: 1) первичные эффекты — органические изменения, возникающие непосредственно в облучаемых живых тканях (прямое облучение); 2) вторичные эффекты — неспецифические изменения, возникающие в организме в ответ на облучение (длительное облучение диффузно отраженным излучением). Лазеры по степени опасности генерируемого ими излучения подразделяются на четыре класса: 1- й класс — выходное излучение не представляет опасности для глаз и кожи; 2- й класс — выходное излучение представляет опасность при облучении глаз прямым или зеркально отраженным излучением; 3- й класс — выходное излучение представляет опасность при облучении глаз прямым, зеркально отраженным, а также диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности и (или) при облучении кожи прямым и зеркально отраженным излучением; 4- й класс — выходное излучение представляет опасность при облучении кожи диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности. Работа лазерных установок может сопровождаться также возникновением и других опасных и вредных производственных факторов: шума, вибрации, аэрозолей, газов, электромагнитных и ионизирующих излучений. Класс опасности лазерной установки определяется на основании длины волны излучения X (мкм), расчетной величины энергии облучения Е (Дж) и ПДУ для данных условий работы. Определение уровней облучения персонала для лазеров 2, 3, 4-го классов должно проводиться периодически не реже одного раза в год в порядке текущего санитарного надзора. Кроме того, осуществляется контроль за соблюдением предельно допустимых концентраций вредных веществ в воздухе рабочей зоны, предельно допустимых уровней виброскорости, предельно допустимых уровней электромагнитных излучений, предельно допустимых уровней ионизирующих излучений. КОНТРОЛЬНЫЕ ВОПРОСЫ 1. Какие бывают лазеры по характеру излучения и как они связаны с длительностью излучения? 2. Какими особенностями характеризуется лазерное излучение? 3. Что такое энергетическая освещенность и энергетическая экспозиция лазерного излучения? 4. Какое воздействие оказывают на человека прямое и отраженное лазерное облучение? 5. На сколько классов по степени опасности генерируемого излучения подразделяются лазеры и чем они характеризуются? 6. Какие сопутствующие опасные и вредные производственные факторы возникают при эксплуатации лазеров разных классов? 7. На основании каких параметров определяется класс опасности лазерной установки? 8. За какими характеристиками, кроме основных, осуществляется контроль при эксплуатации лазерной установки? §7.7. НЕИНТЕНСИВНЫЕ ИЗЛУЧЕНИЯ ОПТИЧЕСКОГО ДИАПАЗОНА Наиболее важной областью оптического спектра ЭМИ является видимый свет. Свет – это возбудитель зрительной сенсорной системы, обеспечивающей человека информацией об окружающей среде. Параметры видимого света влияют на способность получать ощущения и воспринимать окружающую среду. Освещение выполняет полезную общефизиологическую функцию, способствующую появлению благоприятного психического состояния людей. С улучшением освещения повышается работоспособность, качество работы, снижается утомляемость, вероятность ошибочных действий, травматизма, аварийности. Недостаточное освещение ведет к перенапряжению глаз, к общему утомлению человека. В результате снижается внимание, ухудшается координация движений, что может привести при физической работе к несчастному случаю. Кроме того, работа при низкой освещенности способствует развитию близорукости и других заболеваний, а также расстройству нервной системы. Повышенная освещенность тоже неблагоприятно влияет на общее самочувствие и зрение, вызывая прежде всего слепящий эффект. Освещение, удовлетворяющее гигиеническим и экономическим требованиям, называется рациональным. К этим требованиям относятся: достаточная освещенность, равномерность, отсутствие слепимости и пульсации светового потока, благоприятный спектральный состав, экономичность. ОСНОВНЫЕ СВЕТОТЕХНИЧЕСКИЕ ЕДИНИЦЫ Для гигиенической оценки условий освещения используются светотехнические единицы, принятые в физике. Светотехнические величины, определяющие показатели освещения, основаны на оценке ощущений, возникающих от воздействия светового излучения на глаза. К количественным показателям относятся: световой поток, сила света, освещенность, яркость поверхности, коэффициент отражения. Видимое излучение — участок спектра электромагнитных колебаний в диапазоне длины волн от 380 до 760 нм, воспринимаемый человеческим глазом. Световой поток F — мощность лучистой энергии, оцениваемой по световому ощущению, воспринимаемому человеческим глазом. За единицу светового потока принят люмен (лм). За единицу силы света принята кандела (кд). Освещенность Е — плотность светового потока на освещаемой поверхности. За единицу освещенности принят люкс (лк). Яркость освещенных поверхностей зависит от их световых свойств, от степени освещенности, а в большинстве случаев также от угла, под которым поверхность рассматривается. Требуемый уровень освещенности определяется степенью точности зрительных работ. Для рациональной организации освещения необходимо не только обеспечить достаточную освещенность рабочих поверхностей, но и создать соответствующие качественные показатели освещения. К качественным характеристикам освещения относятся равномерность распределения светового потока, блесткость, фон, контраст объекта с фоном и т. д. Различают прямую блесткость, возникшую от ярких источников света и частей светильников, попадающих в поле зрения человека, и отраженную блесткость от поверхностей с зеркальным отражением. Блесткость в поле зрения вызывает чрезмерное раздражение и снижает чувствительность и работоспособность глаза. Такое изменение нормальных зрительных функций называется слепимостью. Чтобы избежать слепящего действия света, необходимо подвешивать лампы на определенной высоте, которую выбирают в зависимости от мощности лампы и защитного угла (угла падения света на рабочее место) с учетом отражающих поверхностей. Для повышения видимости целесообразно увеличить контраст различаемых объектов, что более эффективно и экономично в сравнении с увеличением освещенности рабочей поверхности. При повышении контраста следует учитывать цветность и коэффициенты отражения объектов и фона.
|