Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


МЕТОДЫ ИСПЫТАНИЙ 1 страница




(Учебное пособие)

 

Редактор: Н.С.Покачалова

Тех. редактор: А.А.Чориев

Компьютерная верстка: Х.Ш. Жабборов

 

ÓТашкентский государственный технический университет

имени Абу Райхана Беруни, 100095, Ташкент, ул.Университетская, 2

 

 

Отпечатано в типографии ТашГТУ, г.Ташкент

 

ПРИНЯТЫЕ СОКРАЩЕНИЯ И АББРЕВИАТУРЫ

 

ГПУ – гексагональная плотноупакованная кристаллическая решетка

ГСИ – государственная система измерений

ГЦК – гранецентрированный куб

Др – дробимость

ЖБИ – железобетонные изделия

ЖБК – железобетонные конструкции

ККК – коэффициент конструктивного качества

КЛТР – коэффициент линейного температурного расширения

Минералы портландцементного клинкера:

− C3S (алит) − 3CaO·SiO2

− С2S (белит) − 2CaO·SiO2

− С3А − 3CaO·AL2О3

− C4АF − 4CaO·AL2О3 ·Fe2О3

МК – модуль крупности

ОЦК – объемно центрированный куб

НГ – нормальная густота

НВ – твердость по Бринеллю

ПВАД – поливинилацетатная дисперсия

ПЦ – портландцемент

ППЦ – пуццолановый портландцемент

СИ – средство измерений

Сроки схватывания вяжущего вещества:

− Н схв – начало схватывания

− К схв – конец схватывания

ССПЦ – сульфатостойкий портландцемент

ССШПЦ – сульфатостойкий шлакопортландцемент

ТВО – тепловлажностная обработка

ФВ – физическая величина

ШПЦ – шлакопортландцемент

ЮУрГУ – Южно-Уральский государственный университет

 

 

 

 

ПРЕДИСЛОВИЕ

 

Учебное пособие написано в соответствии с учебным планом общего курса «Материаловедение» для студентов, обучающихся по строительным специальностям. По своему содержанию и направлению учебное пособие должно обеспечить углубленные знания по испытанию строительных материалов.

На кафедре «Строительные материалы» ЮУрГУ накоплен большой опыт организации и проведения учебно-исследовательских лабораторных работ по строительным материалам. Их цель – привить студентам навыки постановки, планирования и решения экспериментально-исследовательских задач. При этом реализуется принцип проблемного обучения, который дает возможность научить студентов не только методам квалификации качества основных строительных материалов по стандартным методикам их испытания, но и дать молодым специалистам практические навыки пот регулированию основных свойств материалов технологическими приемами и способами.

Учебные пособия по проведению исследовательских лабораторных работ выдержали пять изданий (1977, 1980, 1985, 1990 и 1995 г. г.). Необходимость нового издания вызвана отсутствием учебных пособий прежних лет издания, появлением новых строительных материалов и совершенствованию правил оценки качества строительных материалов.

В учебном пособии приведены научные основы строительного материаловедения во взаимосвязи со сведениями прикладного характера, касающимися материалов, изделий и конструкций.

Качество, долговечность и стоимость сооружений в большой мере зависят от правильного выбора и применения материалов. Для рационального использования строительных материалов, инженер-строитель должен знать свойства материалов и назначение каждого из них. Это дает возможность строителю: выбрать материал с соответствующими свойствами для каждой части сооружения с учетом эксплуатационной среды; правильно применить наилучшие приемы его обработки и укладки в сооружение; при необходимости заменить один материал на другой без ухудшения качества сооружения; организовать правильное транспортирование и хранение материала без снижения их качества.

Учебное пособие содержит темы лабораторных работ, соответствующие основным разделам Государственного образовательного стандарта по направлению «Строительство» и рабочим учебным программам по дисциплине «Материаловедение». В подготовке различных разделов учебного пособия участвовали преподаватели кафедры «Строительные материалы» ЮУрГУ: доц. Г.С. Семеняк (работы №№ 1, 2, 7, 12, 13, 15, 16, предисловие, введение, глоссарий), проф. В.В. Спасибожко (работы №№ 2, 5, 8, 17), проф. Б.Я. Трофимов (работа № 11), проф. И.Я. Чернявский (работа № 19), доц. М.Д. Бутакова (работы №№ 9, 10, 18, глоссарий), доц. В.М. Жестков (работа № 3), доц. А.С. Королев (работа № 14), доц. В.С. Малютин (работа № 3, 4), доц. М.И. Муштаков (работа № 6), доц. С.Н. Погорелов (работа № 20, глоссарий).

 

ВВЕДЕНИЕ

 

Производство строительных материалов и изделий отличается большим многообразием видов и широким ассортиментом продукции. Инженер-строитель должен уметь хорошо разбираться в обширной номенклатуре этой продукции, выбирать для конкретных условий применения наиболее эффективные и подходящие ее виды с учетом качественных показателей, владеть знаниями в области технологии строительных материалов, представлять физико-химическую сущность процессов переработки исходного сырья в готовый продукт.

Научиться оценивать качество материалов, находить возможные пути регулирования и управления этим качеством и уметь определить области рационального применения материалов в практике современного строительства можно только на основе глубокого изучения связи между составом, строением и свойствами материала. Наиболее полно и конкретно эта связь выявляется в ходе научно-исследовательских экспериментов, проводимых в лабораторных условиях, когда искусственно моделируются изменения составов сырьевых смесей, технологических параметров получения, показателей состояния материалов, имитируя их работу в различных условиях эксплуатации.

В ходе таких экспериментов получают зависимости типов: «состав-свойство», «состав-строение», «строение-свойство», «состояние-свойство», «технологический параметр-свойство» и др. Анализируя эти зависимости, проводят оптимизацию составов и режимов, выбор вида и количества добавок, прогнозируют изменение свойств материалов в зависимости от условий их работы и рекомендуют области применения этих материалов.

Для проведения лабораторных исследований необходима тщательная теоретическая и методическая подготовка студентов. Поэтому учебно-исследователь-ские лабораторные работы по основным темам и разделам дисциплины «Материаловедение» позволяют расширить, углубить и закрепить знания, полученные на лекционных и практических занятиях, и активизируют самостоятельную работу студентов.

Учебное пособие составлено таким образом, что в описании лабораторных работ по каждой теме содержатся:

− общие сведения об изучаемом материале с формулировкой задач исследования;

− цель исследовательской лабораторной работы;

− порядок выполнения лабораторной работы;

− описание методов испытаний материалов;

− указания по составлению выводов и рекомендаций, которые могут быть получены в результате исследования;

− тестовые контрольные вопросы для проверки подготовки студентов к лабораторным работам.

 

 

ОРГАНИЗАЦИЯ РАБОТ

 

Лабораторные занятия продолжительностью 2…4 часа проводятся с подгруппой студентов, состоящей из 8…16 человек, которые получают общее задание на исследовательскую работу. Части общего задания выполняют 4 звена по 2…4 человека в каждом.

Выполнению лабораторных работ предшествует собеседование по теоретическим и методическим вопросам, которые изучаются студентами самостоятельно. Для контроля подготовки студентов к работе используются контрольные вопросы в виде тестов, которые составлены по принципу многовариантного ответа. На каждый контрольный вопрос имеется 4 ответа и только один − правильный.

При выполнении работ назначается дежурное звено студентов, которое несет ответственность за сохранение и исправность приборов, оборудования и инструментов. По окончании работ каждому звену необходимо привести в порядок свое рабочее место, сдать дежурным, которые, в свою очередь, сдают приведенную в порядок лабораторию лаборанту.

 

ОТБОР ПРОБ

Для определения качества материалов в лабораторных условиях испытывают, как правило, не весь материал, а лишь некоторую ее часть (средняя проба). Средней пробой называется небольшая часть материала, отбираемая определенным образом от его общей массы, материал при этом называется опробуемым. Свойства средней пробы должны полностью соответствовать свойствам испытываемого материала той партии, от которой она была отобрана.

Партией считается определенное количество материала (по массе, по объему, в штуках), которое определено соответствующими нормативными документами. В этих же документах регламентированы правила отбора и величина средней пробы для определения качества материала.

Пробы штучных материалов (кирпич, камни, блоки и т.п.) отбирают по не­скольку штук из разным мест партии. Пробы сыпучих рыхлых материалов (песок, щебень, гравий, цемент, гипс) отбирают специальными щупами-пробоотборни­ками из каждого вида тары из разных мест по площади и глубине слоя. Это коли­чество материала называется первичной средней пробой. В дальнейшем из нее от­бирают среднюю лабораторную пробу путем сокращения ее объема до количе­ства, достаточного для выполнения испытаний двукратной повторности. Чаще всего это делается путем квартования: тщательно перемешанную пробу насыпают на ровную площадку в виде правильного усеченного конуса, который делят на 4 равные части двумя взаимно пересекающимися плоскостями. Две противополож­ные части отбрасывают, а оставшиеся соединяют вместе. Перемешивают и, если это необходимо, опять подвергают квартованию до получения двойного количества лабораторной пробы. Одну половину пробы подвергают лабораторным испытаниям. А вторую половину пробы хранят как арбитражную.

 

ОСНОВНОЕ ОБОРУДОВАНИЕ И ИНСТРУМЕНТЫ

 

Для определения физико-механических свойств изучаемых материалов применяют различное оборудование и инструменты.

Для определения линейных размеров применяют:

− металлические линейки с погрешностью измерения 1 мм;

− штангенциркули с погрешностью измерения 0,05 мм; (на рисунке 1 приведены примеры снятия показаний);

− микрометры с погрешностью измерения 0,01 мм (рисунок 2);

− микроскопы с погрешностью измерения 0,001 мм.

 

 

 

Рисунок 1 − Штангенциркуль

 

 

Рисунок 2 − Микрометр

1− скоба; 2 − неподвижная плоскость; 3 − подвиж­ная плоскость;

4 − винт; 5 − стебель; 6 − шкала; 7 − гильза; 8 − трещотка; 9 − тормоз

Если измеряемый образец имеет форму куба или параллелепипеда, то каждую грань измеряют в трех местах по высоте. За окончательный размер каждой грани принимают среднее арифметическое трех измерений. Если образец имеет форму цилиндра, то его диаметр устанавливают как среднее арифметическое двух взаимно-перпендикулярных диаметров, измеренных посередине высоты цилиндра.

Для определения массы образцов или проб применяют весы. В зависимости от величины погрешности и определяемой массы взвешивание производится на весах различных типов:

− торговые типа ВТЦ-10 с погрешностью измерения 5 г (цена деления 5 г, максимальный груз 10 кг);

− лабораторные электронные типа ЕТ-600 с погрешностью измерения 0,02 г (дискретность отсчета 20 мг, максимальный груз 600 г);

− квадрантные лабораторные ВЛКТ-5 с погрешностью измерения 0,01 г (максимальный груз 5 кг);

− аналитические с погрешностью измерения 0,001 г и др.

Обязательное условие для всех типов весов – их постоянное место, с которого их переносить не разрешается. Весы устанавливаются по отвесу или уровню. Всякое взвешивание должно производиться в какой-нибудь таре, масса которой должна быть известна до начала взвешивания.

Для сушки образцов и проб строительных материалов применяются сушильные шкафы различных типов с температурой нагрева до 150 оС. Для автоматического поддержания заданной температуры сушильный шкаф должен быть снабжен терморегулятором.

Для определения прочностных показателей строительных материалов с разрушением образцов применяются механические, гидравлические или ручные прессы (рисунок 2).

Гидравлический пресс ВМ–3,5 (рисунок 3а) состоит из плиты основания 1 со стойками 3, которые удерживают траверсу 2 с верхней плитой 7, подвешенной на винте ручной подачи через шаровую опору. В силовой цилиндр пресса 4 плунжерным насосом 15 с гидроусилителем ГУ подается масло под давлением.

Приводом плунжерного насоса служит однофазный мотор 9 мощностью 0,95 кВт и редуктор с кривошипом 11. Все узлы маслонапорной системы (поз.9, 10, 15, ГУ и МВ) смонтированы на вертикальной раме между стойками пресса 3 справа (на рисунке монтажная рама не показана).

Перед началом испытаний образец 8 устанавливают на нижнюю плиту 6 так, чтобы разрушающая нагрузка была направлена вдоль геометрической оси образца. Верхнюю плиту прижимают к образцу винтом ручной подачи. Управление процессом испытания производится с помощью кнопок 21 («пуск/стоп»; «установка нуля» и «выбор скорости нагружения») выносного электронного пульта 18.

Пульт ПУ–5 (рисунок 3б) комплектуется тремя кабелями (Т, М и С). Пресс подключается к пульту двумя кабелями через два гнезда 22, расположенные на его задней стенке:

− 9-штырьковый микроразъем общего кабеля Т от тензодатчика 17 и микровыключателей МВ;

− 3-х фазную розетку кабеля М управления мотором 9.

В третье гнездо пульта (3-х штырьковую сетевую вилку) подключают отдельный кабель питания С электрической схемы пресса и пульта от внешней сети. Пульт защищен предохранителем ПП и имеет клавишу-выключатель сети ВС.

Испытания начинают подачей напряжения от сети (выключатель ВС) и нажатием кнопки «ПУСК-СТОП» (при закрытом вентиле сброса давления масла 14), а прекращение испытания – повторным нажатием кнопки «ПУСК-СТОП». Положение поршня в процессе испытания контролируется микровыключателями МВ и световыми индикаторами 20 (МАКС. и МИН.). После проведения испытания открывают вентиль сброса давления 14. Поршень опускается в исходное положение, а масло уходит в маслоприемник 12.

  а) пресс гидравлический       б) выносной пульт

 

Рисунок 3 – Схема гидравлического пресса

 

 

В прессе ВМ–3.5 с тензоизмерителем усилия и электронной схемой измерения на табло пульта 19 (6-разрядный цифровой индикатор с ценой деления 0,1 кН) при испытании отражается текущая нагрузка сразу в кН, а ее максимальное значение Pмакс фиксируется и остается до нового цикла. Новый цикл испытаний начинают со сброса предыдущих показаний индикатора 19 на нуль кнопкой: «Установка нуля» и закрытия вентиля 14.

ЕДИНИЦЫ ИЗМЕРЕНИЯ

 

В строительстве, начиная с производства строительных материалов и кончая возведением зданий и сооружений, используются измерения различных видов. Измеряют массу и плотность, силу и давление, температуру, параметры электрического тока и другие физические величины. Для измерения основных физических величин используют стандартные измерительные средства с известными метрологическими характеристиками и отработанной организацией поверочных работ. Применяемые измерительные средства имеют, как правило, некоторый запас по точности, т.е. погрешность измерения в 5…10 раз, а иногда в 20…30 раз меньше, чем заданный допуск на измеряемый параметр.

Однако при определении специальных свойств различных строительных материалов стандартные измерительные средства применяются в качестве вспомогательных в комплексе со специальными приборами, разработанными только для данного испытания. Точность определения заданного параметра при этом зависит, как правило, от ряда специальных операций, выполняемых при испытаниях.

Большинство методов и средств испытаний строительных материалов регламентированы только строительными стандартами и не проходили метрологическую экспертизу. Например, при определении подвижности и жесткости бетонной смеси, морозостойкости бетона, прочности бетона с использованием неразрушающих методов погрешность измерений остается неизвестной и допуск на определяемый параметр, как правило, не задан.

При определении наиболее ответственных функциональных параметров, например, прочности бетона при разрушении контрольных образцов-кубов, учитываются возможные отклонения от значений, полученных при испытании. Область технологического рассеивания результатов здесь изучена хорошо. Погрешность стандартного измерительного средства (пресса) ничтожно мала по сравнению с рассеиванием, связанным с неоднородностью материала, и не учитывается при расчете гарантированной прочности.

Измерения – один из важнейших путей познания природы человеком. Наука и промышленность не могут существовать без измерений. Диапазон измеряемых величини их количество постоянно растут. При этом возрастает и сложность измерений. Измерительная технология как последовательность действий направлена на получение информации требуемого качества.

Значимость измерений – вторая причина важности измерений. Основа любой формы управления, анализа, прогнозирования или регулирования – достоверная исходная информация, которая может быть получена лишь путем измерения требуемых физических величин, параметров и показателей. Только высокая и гарантированная точность результатов измерений обеспечивает правильность принимаемых решений. Современные науки и техника позволяют выполнять многочисленные и точные измерения, однако затраты на них становятся соизмеримыми с затратами на исполнительные операции.

В основе измерения физических величин ФВ лежит метрология – наука об измерениях, об обеспечении их единства, о методах и средствах достижения требуемой точности.

Предметом метрологии является извлечение количественной информации о свойствах объектов и процессов с заданной точностью и достоверностью.

Основные статьи Закона РФ “Об обеспечении единства измерений” устанавливают: организационную структуру государственного управления обеспечением единства измерений; нормативные документы по обеспечению единства измерений; единицы величин и государственные эталоны единиц величин; средства и методики измерений.

Единство измерений – состояние измерений, при котором их результаты выражены в узаконенных единицах величин и погрешности измерений не выходят за установленные границы с заданной вероятностью.

Средство измерений – техническое устройство, предназначенное для измерений и позволяющее решать измерительную задачу путем сравнения измеряемой величины с единицей или шкалой ФВ. Средство измерений − обобщенное понятие, объединяющее самые разнообразные конструктивно законченные устройства, обладающие одним из двух признаков: вырабатывают сигнал (показание), несущий информацию о размере (значении) измеряемой величины и воспроизводят величину заданного размера (таблица 1).

Все объекты окружающего мира характеризуются своими свойствами. Свойство – философская категория, выражающая такую сторону объекта, кото­рая обусловливает его различие или общность с другими объектами и обнаруживается в его отношениях к ним. Свойство – категория качественная. Для количественного выра­жения вводится понятие величины. Величина не существует сама по себе и имеет место лишь постольку, поскольку существует объект со свойствами, выражаемыми данной ве­личиной.

Физическая величина – характеристика свойства физического объекта, общая в качественном отношении многим фи­зическим объектам, но в количественном отношении индивидуальная для каждого объ­екта.

Размер ФВ (числовое значение) – количественное содержание в данном объекте свой­ства, соответствующего понятию ФВ. Например, каждое тело имеет свою массу и тела можно различать по их массе, т.е. по размеру интересующей нас ФВ.

Значение ФВэто оценка ее размера в виде некоторого числа принятых для нее единиц

Единица ФВ (единица измерения) – это ФВ фиксированного размера, ко­торой ус­ловно присвоено числовое значение, равное 1. Она применяется для количествен­ного выражения одно­родных физических величин. Размер единиц ФВ устанавливается путем их законодательно закрепленного определения метрологическими организациям государства.

 

 

Таблица 1 – Средства измерений, применяемые в строительстве

 

Типовые средства измерений Измеряемые параметры
Линейки, метры, рулетки, микроскопы, штангенциркули, скобы. Спектрофо­тометры, светодальномеры, оптические дальномеры, щупы оптические и т.д. Линейные и угловые величины: механические; оптические
Интерферометры, профилографы, микронивелиры, лекальные линейки, плоскомеры, контрольные рейки, уровни, автоколлиматоры Отклонения формы поверхности, плоскостности, прямолинейности
Весы, гири Масса
Прессы, копры, динамометры, твердомеры, силоизмерительные машины, склерометры Прочность, твердость, сила, износоустойчивость
Пикнометры, ареометры, денсиметры, приборы неразрушающего контроля Плотность
Вискозиметры, дуктилометры, конусы, пенетрометры Вязкость
Термометры ртутные и сопротивления, термопары Температура
Дилатометры, колориметры Теплофизические величины
Влагомеры, психрометры, рефрактометры, поляризационные микроскопы Влажность, показатели преломления
Шумомеры, виброметры Акустические величины
Амперметры, вольтметры, омметры, конденсаторы Электрические величины
Часы, секундомеры, реле времени, вибрографы, частотомеры Время и частота
Виброметры, вибростенды, тахометры, анемометры Параметры движения
Расходомеры, счетчики, дозаторы, меры вместимости Расход и количество
Манометры, напорометры, тягомеры Давление
Климатические камеры, разрывные, усталостные, универсальные машины, вибростенды Испытания материалов, изделий и конструкций

 

При проведении измерений следует учитывать номинальные значения физических величин при нормальных условиях (таблица 2).

В случае отклонений от этих условий следует вводить поправку на систематическую погрешность измерений.

Основная физическая величина – ФВ, входящая в систему и условно принятая в качестве независимой от других величин этой системы.

Система физических величин – совокупность физических величин, связанных между собой зависимостями.

Система единиц физических величин – совокупность основных и производных единиц, относящихся к некоторой системе величин и образованная в соответствии с принятыми принципами. Совокупность основных и производных единиц ФВ, образованная в соответствии с принятыми принципами, называется системой единиц ФВ. В РФ используется система единиц средств измерений “Systeme International unites”, введенная ГОСТ 8.417 “ГСИ. Единицы физических величин”. В русской транскрипции она приняла аббревиатуру СИ.

 

 

Таблица 2 − Номинальные значения ряда физических величин

 

Влияющая величина Значение
Температура для всех видов измерений, оС (К) 20 (293)
Давление окружающего воздуха для измерения ионизирующих излучений, теплофизических, температурных, магнитных, электрических измерений, измерения давления и параметров движения, кПа (мм рт. ст.) 100 (750)
Давление окружающего воздуха для линейных, угловых измерений, измерения массы, силы света и измерений в других областях, кроме указанных выше, кПа (мм рт. ст.) 101,3 (760)
Относительная влажность воздуха для линейных, угловых измерений, измерения массы, измерений в спектроскопии, %
Относительная влажность воздуха для измерения электрического сопротивления, %
Относительная влажность воздуха для измерений температуры, силы твердости, переменного электрического тока, ионизирующих излучений, параметров движения, %
Относительная влажность воздуха для всех видов измерений, кроме указанных выше, %
Плотность воздуха, кг/м3 1,2
Ускорение свободного падения, м/с2 9,8
Магнитная индукция (Тл) и напряженность электростатического поля (В/м) для измерений параметров движения, магнитных и электрических величин
Магнитная индукция (Тл) и напряженность электростатического поля (В/м) для всех видов измерений, кроме указанных выше Соответствует характеристикам поля Земли в данном географическом районе
Частота питающей сети переменного тока, Гц 50 ± 1
Среднеквадратичное значение напряжения питающей сети переменного тока, В 220 ± 10

 

Различают системные и внесистемные единицы измерений.

К системным единицам измерений относятся:

основные или условно независимые единицы измерений – 7 наименований (длина, масса, время, сила электрического тока, термодинамическая тем­пература, количество вещества, сила света);

производные или условно зависимые единицы измерений - 18 наименований (частота, сила, давление, энергия, мощность, количество электриче­ства, электрическое напряжение, электрическая емкость, электрическое сопротивление, электрическая проводимость, поток магнитной индукции, магнитная индукция, индуктивность, световой поток, осве­щенность, активность радионуклида, поглощенная доза ионизирующего излучения, экви­валентная доза излучения) Производные единицы могут быть когерентными (связанные с другими единицами системы уравнением, в котором числовой множитель принят равным единице, например, ско­рость) и некогерентными, в уравнении которого содержится числовой коэффициент, отличный от единицы. Для преобразования в когерентную единицу следует подставлять величины со значениями в единицах средств измерений, дающие после умножения на коэффициент общее числовое значение, равное единице.

дополнительные единицы измерений – 2наименования (плоский угол, телесный угол).

К внесистемным единицам измерений относятся:

единицы, допускаемые к применению наравне с единицами СИ (тонна, градус, минута, час, сутки, секунда, литр);

единицы, допускаемые к применению в специальных областях (морская миля, карат, мм. рт. ст., л. с., световой год, парсек, диоптрия, астрономическая единица, гектар, электрон-вольт, вольт-ампер, реактивная мощность, атомная единица массы и некоторые другие).

Различают кратные и дольные единицы физических величин. Кратная единица – это единица физической величины, в целое число раз превышающая системную или внесистемную единицу. Дольная единица − единица физической величины, значение которой в целое число раз меньше системной или внесистемной единицы (таблица 3).

 

Таблица 3 – Множители и приставки для образования десятичных

кратных и дольных единиц и их наименований

 

Множитель Приставка Обозначение приставки Множитель Приставка Обозначение приставки
международное русское международное русское
1018 экса Е Э 10-1 деци d д
1015 пета Р П 10-2 санти c с
1012 тера Т Т 10-3 милли m м
109 гига G Г 10-6 микро μ мк
106 мега M М 10-9 нано n н
103 кило k к 10-12 пико p п
102 гекто h г 10-15 фемто f ф
101 дека da да 10-18 атто а а

 


Поделиться:

Дата добавления: 2014-11-13; просмотров: 123; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты