КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Вектор скорости. Средняя и мгновенная скорость.Движения различных тел различаются тем, что тела за одинаковые промежутки (равные) времени проходят различные по величине пути. Для характеристики такого движения вводят понятие скорости. 1) Введем понятие среднейскорости ( ) – это величина, равная отношению перемещения к тому промежутку времени, в течение которого это перемещение произошло . 2) За малый промежуток времени Dt точка проходит путь DS, совершая перемещение (рис. 2.6). При Dt®0 отношения и практически перестают изменяться как по величине, так и по направлению и стремятся к определенному пределу и который будет выражать вектор мгновеннойскорости, т.е. скорости в данный момент времени. В математике данный предел называется производной, следовательно, скорость можно определить как производную радиус-вектора движущейся точки по времени: или по модулю . При бесконечном уменьшении Dt различие между DS и будет уменьшаться и в пределе они совпадут, тогда можно записать, что модуль скорости , (2.1) т.е. мгновенная скорость при неравномерном движении численно равна первой производной пути по времени. Итак, вектор мгновенной скорости в любой точке траектории направлен по касательной к траектории (и совпадает с направлением вектора перемещения) и численно равен первой производной пути по времени. Единица измерения v: [v]=м/с. Если рассматривать движение в пространстве, то величину и направление вектора скорости можно представить через проекции этого вектора на направления осей x, y, z (рис. 2.7). ; где , – единичные вектора по осям x, y, z. Тогда Следовательно,
|