КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Кинетическая энергия тела.Рассмотрим простейшую систему, состоящую из одной частицы (материальной точки). Напишем уравнение движения частицы . Здесь – результирующая всех сил, действующих на тело. Умножим это уравнение на перемещение частицы . Тогда . Здесь – есть приращение скорости за время dt. Соответственно, . После этого получаем: (3.9) Если система замкнута, то , следовательно, , а сама величина . Эта величина называется кинетической энергией частицы. Говорят, что для изолированной системы кинетическая энергия является интегралом движения (т.е. остается неизменной). Если на частицу действует сила , то кинетическая энергия не остается постоянной. Проинтегрируем соотношение (3.9) вдоль некоторой траектории от точки 1 до точки 2. . Левая часть этого равенства представляет собой разность значений кинетической энергии в точках 2 и 1, т.е. приращение кинетической энергии на пути 1 – 2. Учтя это, получим: , где А – работа силы на пути 1®2, поэтому иногда пишут вместо А ® А12. Итак: Работа результирующей всех сил, действующих на частицу, идет на приращение кинетической энергии частицы: А12 = Т2 - Т1. Энергия имеет такую же размерность, как и работа.
|