![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Використання рівняння Шредінгера до атома водню. Хвильова функція. Квантові числаТеорія Бора будови й властивостей енергетичних рівнів електронів у водневоподібних системах знайшла своє підтвердження у квантовій механіці. Квантова механіка також стверджує, що: a) електрони в атомах водню знаходяться лише в дискретних енергетичних станах. При переході електронів з одних станів в інші випромінюється або поглинається фотон; б) не існує певних колових орбіт електронів. В силу хвильової природи електрони «розмиті» в просторі подібно до хмарки негативного заряду. Розміри й форму такої хмарки в заданому стані можна розрахувати. Розглянемо рух електрона в кулонівському полі ядра із зарядом Ze, потенціальна енергія якого виражається формулою
де r – відстань між електроном і ядром. Стан електрона в атомі водню або водневоподібному атомі описується деякою хвильовою функцією Y, яка задовольняє стаціонарне рівняння Шредінгера:
де Для розв’язування рівняння Шредінгера (1.4.2), тобто знаходження виду хвильової функції для електрона в атомі водню слід перейти від декартових координат до сферичних. У цьому випадку зв’язок між параметрами цих систем координат визначається з рис. 1.12. Співвідношення, які пов’язують координати x,y,z декартової прямокутної системи координат із сферичними координатами r, q, j такі:
Рис. 1.12
Таким чином можна вважати, що хвильова функція y електрона в атомі водню залежить від сферичних координат, тобто y=y(r, q, j). Опустивши досить громіздкі перетворення переходу від декартової системи координат до сферичної, одержимо:
Якщо розглядати основний (не збуджений) стан атома водню, то другою й третьою складовими в лівій частині рівняння (1.4.4) можна знехтувати. Електрон в такому стані рухається лише по коловій траєкторії і хвильова функція не залежить від q і j. Тому
Хвильова функція y електрона в основному стані (1.4.5) є функцією лише r, тобто y=y( r). Такий стан називається s-станом; він має сферично-симетричний характер. Імовірність виявити електрон у заданій точці атома залежатиме лише від r. Умовам стаціонарного стану відповідає центральносиметрична функція, що легко диференціюється і має вигляд:
де a ─ деяка стала величина, яка має розмірність довжини. Необхідні похідні від (1.4.6) підставимо в (1.4.5). Після скорочення на
Рівність (1.4.7) має місце для будь-яких значень r при виконанні таких умов:
Розв’язавши систему рівнянь (1.4.8) відносно а і Е одержуємо:
Покажемо, що вираз (1.4.9) є найбільш імовірною відстанню електрона в атомі водню до ядра. Імовірність знайти електрон на відставні r від ядра, точніше в інтервалі відстаней від r до r+dr, тобто в кульковому шарі з об¢ємом dV=4pr2 dr, дорівнює:
З урахуванням (1.4.6), хвильової функції основного стану маємо:
де Дослідимо вираз густини імовірності на максимум, тобто похідну від w(r) прирівняємо до нуля
звідки r=a. (1.4.13)
Цей результат є окремим випадком загального висновку: борівські орбіти електрона в атомі водню є геометричними місцями точок, у яких із найбільшою імовірністю можна виявити електрон. Залежність густини імовірності w(r) виявлення електрона на різних відстанях від ядра показана на рис. 1.13. За теорією Бора імовірність виявлення електрона у стані з n=1 відмінна від нуля лише для r=a, а згідно з висновками квантової механіки ця відстань є лише найбільш імовірною.
Рис. 1.13 Теорія Бора дає можливість визначити значення енергії електрона в будь-якому енергетичному стані, а також радіус відповідних борівських орбіт:
де m ― маса електрона; e ― заряд електрона; e0 ― діелектрична проникність вакууму; Зіставлення (1.4.9) і (1.4.15), а також (1.4.10) і (1.4.14) показують, що висновки квантової механіки й теорії Бора повністю збігаються. Цей збіг підкреслює значну історичну роль теорії Бора, яка ще не є квантовою, однак і не класичною теорією. Хвильові функції для наступних основних двох енергетичних рівнів електронів у атомі водню мають вигляд
Ці хвильові функції також є розв¢язками рівняння (1.4.5) при умові, що Для збуджених атомів хвильові функції не є центрально симетричними і залежать не лише від r, а й від q і j. Ці хвильові функції містять три цілочислові параметри, які називають квантовими числами. Серед них: n ― головне квантове число, квантує енергію електрона – збігається з аналогічним квантовим числом теорії Бора і набуває значень від 1 до ¥; l ― орбітальне квантове число, квантує момент імпульсу
Орбітальне квантове число набуває значень l=0,1,2,... . ml ― магнетне квантове число, квантує проекцію орбітального моменту імпульсу на вісь Z напрямку зовнішнього магнетного поля
Магнетне квантове число набуває значень ml= 0,±1,±2,±3,... .
|