Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


ОБЩАЯ ХАРАКТЕРИСТИКА И КЛАССИФИКАЦИЯ




Традиционно применяемые металлические и неметаллические материалы в значительной мере достигли своего предела конструктивной прочности. Вместе с тем развитие современной техники требует создания материалов, надежно работающих в сложной комбинации силовых и температурных полей, при воздействии агрессивных сред, излучений, глубокого вакуума и высоких давлений. Зачастую требования, предъявляемые к материалам, могут носить противоречивый характер. Решение этой задачи можно осуществить путем использования композиционных материалов.

Композиционным материалом (КМ) или композитом называют объемную гетерогенную систему, состоящую из сильно различающихся по свойствам, взаимно нерастворимых компонентов, строение которой позволяет использовать преимущества каждого из них.

Принцип построения КМ человек заимствовал у природы. Типичными композиционными материалами являются стволы деревьев, стебли растений, кости человека и животных.

КМ позволяют иметь заданное сочетание разнородных свойств: высокой удельной прочности и жесткости, жаропрочности, износостойкости, теплозащитных свойств и др. Спектр свойств КМ невозможно получить при использовании обычных материалов. Их применение дает возможность создавать ранее недоступные, принципиально новые конструкции.

Благодаря КМ стал возможен новый качественный скачок в увеличении мощности двигателей, уменьшении массы машин и конструкций и повышении весовой эффективности транспортных средств и авиационно-космических аппаратов.

Важными характеристиками материалов, работающих в этих условиях, являются удельная прочность σв/ρ и удельная жесткость Е/ρ, где σв — временное сопротивление, Е — модуль нормальной упругости, ρ – плотность материала.

Высокопрочные сплавы, как правило, имеют низкую пластичность, высокую чувствительность к концентраторам напряжений и сравнительно низкое сопротивление развитию трещин усталости. Хотя композиционные материалы могут иметь также невысокую пластичность, они значительно менее чувствительны к концентраторам напряжений и лучше сопротивляются усталостному разрушению. Это объясняется разным механиз-мом образования трещин у высокопрочных сталей и сплавов. В высокопрочных сталях трещина, достигнув критического размера, в дальнейшем развивается прогрессирующим темпом.

В композиционных материалах действует другой механизм. Трещина, двигаясь в матрице, встречает препятствие на границе раздела матрица—волокно. Волокна тормозят развитие трещин, и их присутствие в пластичной матрице приводит к росту вязкости разрушения.

Таким образом, в композиционной системе сочетаются два противоположных свойства, необходимых для конструкционных материалов — высокая прочность за счет высокопрочных волокон и достаточная вязкость разрушения благодаря пластичной матрице и механизму рассеяния энергии разрушения.

КМ состоят из сравнительно пластичного матричного материала-основы и более твердых и прочных компонентов, являющихся наполнителя-ми. Свойства КМ зависят от свойств основы, наполнителей и прочности связи между ними.

Матрица связывает композицию в монолит, придает ей форму и служит для передачи внешних нагрузок арматуре из наполнителей. В зависимости от материала основы различают КМ с металлической матрицей, или металлические композиционные материалы (МКМ), с полимерной — полимерные композиционные материалы (ПКМ) и с керамической — керамические композиционные материалы (ККМ).

Ведущую роль в упрочнении КМ играют наполнители, часто называемые упрочнителями. Они имеют высокую прочность, твердость и модуль упругости. По типу упрочняющих наполнителей КМ подразделяют на дисперсноупрочненные,волокнистые и слоистые (рис. 28.2).

Рис. 28.2. Схемы строения композиционных материалов:
а) дисперсноупрочненные; б) волокнистые; в) слоистые

В дисперсноупрочненные КМ искусственно вводят мелкие, равномерно распределенные тугоплавкие частицы карбидов, оксидов, нитридов и др., не взаимодействующие с матрицей и не растворяющиеся в ней вплоть до температуры плавления фаз. Чем мельче частицы наполнителя и меньше расстояние между ними, тем прочнее КМ. В отличие от волокнистых, в дисперсноупрочненных КМ основным несущим элементом является матрица. Ансамбль дисперсных частиц наполнителя упрочняет материал за счет сопротивления движению дислокаций при нагружении, что затрудняет пластическую деформацию. Эффективное сопротивление движению дислокаций создается вплоть до температуры плавления матрицы, благодаря чему дисперсноупрочненные КМ отличаются высокой жаропрочностью и сопротивлением ползучести.

Арматурой в волокнистых КМ могут быть волокна различной формы: нити, ленты, сетки разного плетения. Армирование волокнистых КМ может осуществляться по одноосной, двухосной и трехосной схеме (рис. 28.3, а).

Прочность и жесткость таких материалов определяется свойствами армирующих волокон, воспринимающих основную нагрузку. Армирование дает больший прирост прочности, но дисперсное упрочнение технологически легче осуществимо.

Слоистые композиционные материалы (рис. 28.3, б) набираются из чередующихся слоев наполнителя и матричного материала (типа «сэндвич»). Слои наполнителя в таких КМ могут иметь различную ориентацию. Возможно поочередное использование слоев наполнителя из разных материалов с разными механическими свойствами. Для слоистых композиций обычно используют неметаллические материалы.

Рис. 28.3. Схемы армирования волокнистых (а) и слоистых (б) композиционных материалов


Поделиться:

Дата добавления: 2014-12-23; просмотров: 182; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты