КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Environmental engineeringA filter bed, a part of sewage treatment Environmental engineering deals with the treatment of chemical, biological, and/or thermal waste, the purification of water and air, and the remediation of contaminated sites, due to prior waste disposal or accidental contamination. Among the topics covered by environmental engineering are pollutant transport, water purification, waste water treatment, air pollution, solid waste treatment and hazardous wastemanagement. Environmental engineers can be involved with pollution reduction, green engineering, and industrial ecology. Environmental engineering also deals with the gathering of information on the environmental consequences of proposed actions and the assessment of effects of proposed actions for the purpose of assisting society and policy makers in the decision making process. Environmental engineering is the contemporary term for sanitary engineering, though sanitary engineering traditionally had not included much of the hazardous waste management and environmental remediation work covered by the term environmental engineering. Some other terms in use are public health engineering and environmental health engineering. Geotechnical engineering A slab-on-grade foundation Geotechnical engineering is an area of civil engineering concerned with the rock and soil that civil engineering systems are supported by. Knowledge from the fields of geology, material science and testing, mechanics, and hydraulics are applied by geotechnical engineers to safely and economically design foundations, retaining walls, and similar structures. Environmental concerns in relation to groundwater and waste disposal have spawned a new area of study called geoenvironmental engineering where biology and chemistry are important. Some of the unique difficulties of geotechnical engineering are the result of the variability and properties of soil. Boundary conditions are often well defined in other branches of civil engineering, but with soil, clearly defining these conditions can be impossible. The material properties and behavior of soil are also difficult to predict due to the variability of soil and limited investigation. This contrasts with the relatively well defined material properties of steel and concrete used in other areas of civil engineering. Soil mechanics, which define the behavior of soil, is complex due to stress-dependent material properties such as volume change, stress–strain relationship, and strength.
|