Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Вращательная относительность и вращательные координаты.




Читайте также:
  1. Механическая система. Масса системы, Центр масс и его координаты.
  2. Объективность, относительность истины. Истина и заблуждение
  3. Относительность вакуумных возбуждений.
  4. Относительность сил и полей в теории гравитации Эйнштейна.
  5. Относительность сил и полей инерции.
  6. Относительность электромагнитного поля в геометризированной электродинамике.
  7. Относительность энергии равномерного движения.
  8. Торсионные поля и относительность вращения.
  9. Число степеней свободы механической системы. Поступательные, вращательные и колебательные степени свободы молекулы. Теорема о равнораспределении энергии по степеням свободы.

Поступательное и вращательное движение. Системы отсчёта как с поступательными, так и вращательными системами координат. Шестимерные и десятимерные пространства событий. Класс голономных и неголономных координат.

 

В повседневной жизни мы наблюдаем два типа движений тел – поступательные и вращательные. Например, автомобиль, который движетсяпогоризонтальной поверхности, движется поступательно. Движение колес автомобиля относительно его корпуса является вращательным. Поступательное движение тел описывается в физике поступательными координатами х, у и z. Для описания вращательного движения используют вращательные координаты ф1, ф2, ф3 (ими могут быть углы Эйлера).

Механика Ньютона, электродинамика Максвелла-Лоренца-Эйнштейна, теория гравитации Эйнштейна и геометризированная электродинамика построены так, что используемые этими теориями системы отсчета образуют множество относительных поступательных координат (см. таблицу № 1). В таблице также указаны относительные физические величины, причем каждая более сложная теория включает в себя все предыдущие относительные величины и добавляет свои. Например, в электродинамике Максвелла-Лоренца-Эйнштейна, которая использует четырехмерные инерциальные системы отсчета, кинетическая энергия равномерного движения зарядов относительна, так же как и в механике Ньютона. Но в ней дополнительно оказываются относительными длина объекта и время его жизни. В теории гравитации Эйнштейна и геометризированной электродинамике относительно все то, что и в электродинамике Максвелла-Лоренца-Эйнштейна, плюс относительными оказываются гравитационные и электромагнитные поля соответственно.

Таблица № 1.

Теория Система отсчета Относительные координаты Геометрия многообразия относительных координат Относительная физическая величина
Механика Ньютона Трехмерная инерциальная x, y, z Трехмерная евклидова Кинетическая энергия равномерного движения
Электродинамика Максвелла- Лоренца- Эйнштейна Четырехмерная инерциальная x, y, z, ct Четырехмерная псевдоевклидова Длина и время
Теория гравитации Эйнштейна Ускоренная локально- инерциальная первого рода x, y, z, ct Четырехмерная риманова Гравитационное поле
Геометризированная электродинамика Ускоренная локально- инерциальная первого рода x, y, z, ct Четырехмерная риманова Электромагнитное поле

 



Легко видеть, что в эту таблицу не входят вращательные координаты ф1, ф2, ф3. Это и понятно, поскольку все перечисленные в таблице системы отсчета по определению не вращаются. Поэтому можно сказать, что до сих пор теория относительности развивалась как теория поступательной относительности.

Следующий шаг в развитии теории относительности потребовал введения многообразия относительных координат ускоренных систем отсчета, которые испытывают вращение при своем движении. Такие системы отсчета движутся не только в трансляционных координатах, но также и во вращательных. Теория, в которой используются вращательные координаты, требует увеличения размерности пространства событий. Например, если рассматриваются трехмерные вращающиеся системы отсчета с трансляционными координатами х, у и z, то они дополнительно описываются тремя вращательными координатами. В этом случае пространство событий шестимерно. Если же мы будем рассматривать четырехмерные вращающиеся системы отсчета, то пространство событий будет уже десятимерным, поскольку в четырехмерном пространстве трансляционных координат х, у, z, ct имеется шесть вращательных координат: три пространственных угла ф1, ф2, ф3 и три псевдоевклидовых угла 1, 2, 3.



Трансляционные и вращательные координаты существенно отличаются по своим свойствам. Трансляционные координаты относятся к классу голономных (или интегрируемых). Движение в голономных координатах характерно тем, что оно не зависитот направления пути в одну и ту же точку пространства.

Рис. 8. Результат движения в голономных координатахх, у,иz не завит от последовательности пути движения.

 

Наглядно это свойство изображено на рис. 8, где показано движение в голономных координатах х, у, и z из начала координат О до точки Р по отрезкам 1, 2 и 3 вдоль осей Ох, Оу и Oz. Ha рис. 8 а) движение начинается вдоль оси х на величину отрезка 1, затем вдоль оси у на величину отрезка 2 и, наконец, вдоль оси z на величину отрезка 3. В результате мы приходим в точку Р. На рис. 8 б) порядок движения изменился: сначала движение происходит вдоль оси у на величиау отрезка 2, затем вдоль оси х на величину отрезка 1 и, окончательно, вдоль оси z на величину отрезка 3. И опять мы приходим в точку Р. Этот же результат мы получим, если начнем движение вдоль оси z, как это показано на рис. 8 в).

В отличие от голономных координат х, у, и z, при движении в неголономных координатах ф1, ф2, ф3 результат двух поворотов на конечные углы зависит от последовательности этих поворотов. Для иллюстрации этого утверждения, рассмотрим два последовательных поворота вокруг осей х, и z на углы 90° (рис. 9 и 10).




 

Рис. 9. Два последовательных поворота на угол180°: а) – поворот на90°по часовой стрелке вокруг осиz; б) – то же, вокруг оси у; в) – результат двух последовательных поворотов.

 

Рис. 10. Смена порядка последовательных поворота на угол 180°: а) -поворот на 90° по часовой стрелке вокруг оси у, б) – то же, вокруг оси z; в) – результат двух последовательных поворотов.

 

Из рисунков видно, что результат двух конечных поворотов вокруг осей у и z зависит от последовательности этих поворотов (положения квадрата со звездочкой на рис. 9 в и рис. 10 в не совпадают).

 


Дата добавления: 2014-12-30; просмотров: 16; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.012 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты