КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Относительность энергии равномерного движения.Абсолютная и относительная физическая величина. Примеры относительных физических величин. Понятие геодезической линии. Идеализация инерциальной системы отсчёта. Пространство Евклида как "абсолютная пустота".
Что такое абсолютная и относительная величина в физическом понимании? Мы будем говорить, что некоторая физическая величина относительна, если её можно обратить в нуль (хотя бы локально) с помощью каких-либо преобразований, имеющих физический смысл. Соответственно, если этого сделать нельзя, то физическая величина является абсолютной. Наблюдая, как Солнце восходит на Востоке и заходит на Западе, Аристотель и Птолемей пришли к выводу, что Земля находится в абсолютном покое, а Солнце и звезды вращаются вокруг неё. Однако более точные исследования астрономов показали, что Земля движется вокруг Солнца, а Солнце, в свою очередь, движется относительно звезд. Оказалось, что абсолютно покоящихся систем отсчета в природе не существует. Все находится в относительном движении. Рис. 2. Система отсчета S связана с массойm. Система отсчета S* связана с массой m*. Масса m* движется относительно массы m с постоянной скоростью v.
Выберем две системы отсчета, одна из которых S связана с массой m, а другая S* с массой m*. Предположим, что физик расположен в системе отсчета S и измеряет координаты до системы S*. Пусть система отсчета S* движется относительно системыS с постоянной скоростью v без вращения. По определению такая система отсчета является инерциальной. Понятно, что скорость тела отсчета m*, с которым связана система S*, также постоянна и равна v. В результате измерений физик получит множество относительных координат систем отсчета S и S* . Исследуя это множество он обнаружит, что: а) трехмерная геометрия этого множества евклидова; б) траектории тел отсчета представляют собой прямые линии; в) кинетическая энергия тел отсчета является величиной относительной. Действительно, кинетическая энергия массы m*, записанная в координатах системы S равна половине произведения этой массы на квадрат скорости v. Перейдем теперь из системы S в систему S*, где масса m*, покоится (v = 0). В механике Ньютона такие переходы, совершаются с помощью координатных преобразований Галилея-Ньютона. В результате исследователь обнаружит, что кинетическая энергия тела m* в системе S* равна нулю. Этот результат как раз и доказывает, что кинетическая энергия инерциально движущихся тел относительна. В геометрии существует понятие геодезической линии. Это линия соответствует кратчайшему расстоянию между двумя точками в данной геометрии. В геометрии Евклида геодезической (в дальнейшем слово линия мы будем опускать) является прямая. Поэтому уравнения движения тел отсчета надо записать в таком виде, чтобы их решения приводили к прямолинейным траекториям тел. Из механики Ньютона нам известно, что уравнения движения в этом случае запишутся в виде равенства нулю произведения массы тела на его ускорение. Это уравнения движения свободных тел. Но такого в природе не бывает! Все тела отсчета обладают массой и, следовательно, гравитационным взаимодействием. Конечно, это взаимодействие очень мало и в большинстве случаев им можно пренебречь (так обычно и поступают физики). Следовательно, понятие инерциальной системы отсчета является идеализированным. Исследуя пространство событий этих систем, мы получаем тривиальные уравнения движения и никаких уравнений поля. В этом смысле плоское пространство Евклида, образованное множеством относительных координат инерциальных систем отсчета, соответствует «абсолютной пустоте», так, как будто массы (и другие физические характеристики) тел отсчета устремились к нулю.
3. Четырёхмерное пространство событий и относительность времени. Пространство событий инерциальной системы отсчёта в механике Ньютона. Механика Эйнштейна-Лоренца и её геометрия. Следствия уравнений релятивистской механики. Непостоянство массы и геометрических размеров тела. Энергия покоя. Псевдоевклидова геометрия как модель "абсолютного вакуума".
Пространство событий инерциальных систем отсчета механики Ньютона трехмерно и использует три пространственных координаты х, у и z. При движении систем отсчета эти координаты зависят от времени t, которое выступает в механике Ньютона как абсолютная величина. Представления о трехмерности пространства сохранялись в физике до тех пор, пока не начались эксперименты, связанные с распространением света. Было установлено, что свет распространяется со скоростью с = 300000 км/сек. При таких скоростях материи (или близких к ним, но меньших чем с) пространство событий становится четырехмерным, при этом время, умноженное на скорость света с образует четвертую координату Х0 = ct дополнительную к трем координатам х, у и z. В результате механику Ньютона заменила более совершенная релятивистская механика Эйнштейна-Лоренца. Геометрия пространства событий такой механики наделено структурой псевдоевклидовой геометрии. Это плоская геометрия, геодезические которой представляют собой четырехмерные прямые линии. По этим линиям движутся тела отсчета четырехмерных инерциальных систем. Название псевдоевклидова геометрия связано с тем, что четвертая координата х0 = ct выступает мнимой координатой по отношению к пространственным координатам х, у и z. Понятно, что четырехмерная инерциальная система отсчета является такой же идеализацией, как и трехмерная, поскольку, все тела отсчета хоть в какой-то степени взаимодействуют между собой. Из анализа уравнений релятивистской механики (т.е. механики больших скоростей) вытекают удивительные следствия. Во-первых, покоящееся тело отсчета обладает энергией покоя, равной произведению массы покоя m на квадрат скорости света: Е = mc2. Во-вторых, масса тела зависит от скорости движения и стремится к бесконечно большой величине при приближении скорости тела к скорости света. В третьих, всякое ускоренное поступательное движение в четырехмерном пространстве представляется как вращение в плоскостях, образованных осью времени ct и координатными осями х, у и z . На рис. 3 представлена одна из плоскостей, а именно, плоскость ct – х. На этой плоскости прямые, расположенные под углом к осям х и ct, представляют собой образующие светового конуса, по которым движется свет, естественно со скоростью света. Все тела отсчета, масса покоя которых m0 отлична от нуля, движутся внутри светового конуса, т.е. внутри сектора где расположена гиперболическая кривая.
Рис.3. Плоскостьct-x, на которой изображены направляющие светового конуса будущего (t>0). Нерелятивисткая скорость движения вдоль оси Х вычисляется из прямоугольного треугольника через тангенс угла по следующей формуле v = x/t = ctga с.
Из рисунка видно, что скорость движения v = x/t вдоль оси х определяется через тангенс угла a, а изменение скорости сводится к вращению в плоскости ct – х. В четвертых, длина L0 любого объекта зависит от скорости и уменьшается с увеличением его скорости. При скорости v = с длина вдоль направления движения обращается в ноль. Например, наблюдатель, который следит за движущимся с большой скоростью шаром, увидит вместо круглого шара сплюснутый в направлении движения диск. В пятых, время в четырехмерном пространстве становится величиной относительной и течет по-разному, в зависимости от скорости движения системы отсчета. Если астронавты в полете к далеким звездам будут двигаться в космическом корабле со скоростью, близкой к скорости света, то их время будет течь медленнее, чем на Земле. Этот странный с житейской точки зрения вывод был неоднократно проверен экспериментально. Были измерены времена жизни неустойчивых (распадающихся на части) элементарных частиц в зависимости от скорости их движения. Оказалось, что чем ближе скорость частицы к скорости света, тем больше времени она живет. Подобно плоской геометрии Евклида, псевдоевклидова геометрия приводит к тривиальным уравнениям движения тел отсчета (вспомним, что это уравнения движения свободных тел) и, соответственно, к отсутствию каких-либо уравнений поля. Можно сказать, что псевдоевклидова геометрия представляет собой четырехмерную модель «абсолютного вакуума». Эта модель соответствует реальности в пределе, когда массы тел отсчета стремятся к нулю.
|