КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Основные параметры микроклимата в производственных помещениях
В процессе труда в производственном помещении человек находится под влиянием определенных метеорологических условий, или микроклимата – климата внутренней среды этих помещений. К основным нормируемым показателям микроклимата воздуха рабочей зоны1 относятся температура (t, °С), относительная влажность (φ, %), скорость движения воздуха (V, м/с). Существенное влияние на параметры микроклимата и состояние человеческого организма оказывает также интенсивность теплового излучения (I, Вт/м2) различных нагретых поверхностей, температура которых превышает температуру в производственном помещении. 1 Воздух рабочей зоны – это воздушная среда в пространстве высотой до 2 м над уровнем пола или площадки, где находятся рабочие места.
Относительная влажность воздуха представляет собой отношение фактического количества паров воды в воздухе при данной температуре D (г/м3) к количеству водяного пара, насыщающего воздух при этой температуре, . Если в производственном помещении находятся различные источники тепла, температура которых превышает температуру человеческого тела, то тепло от них самопроизвольно переходит к менее нагретому телу, т. е. к человеку. Известно, что различают три принципиально разных элементарных способа распространения тепла: теплопроводность, конвекцию и тепловое излучение. Теплопроводность представляет собой перенос тепла вследствие беспорядочного (теплового) движения микрочастиц (атомов, молекул или электронов), непосредственно соприкасающихся друг с другом. Конвекцией называется перенос тепла вследствие движения и перемешивания макроскопических объемов газа или жидкости. Тепловое излучение – это процесс распространения электромагнитных колебаний с различной длиной волны, обусловленный тепловым движением атомов или молекул излучающего тела. В реальных условиях тепло передается не каким-либо одним из указанных выше способов, а комбинированным. Тепло, поступающее в производственное помещение от различных источников, влияет на температуру воздуха в нем. В производственных помещениях с большим тепловыделением приблизительно 2/3 тепла поступает за счет излучения, а практически все остальное количество приходится на долю конвекции. Количество тепла, переданного окружающему воздуху конвекцией (QK, Вт), при непрерывном процессе теплоотдачи может быть рассчитано по закону теплоотдачи Ньютона, который для непрерывного процесса теплоотдачи записывается в виде: , где α – коэффициент конвекции, ; S – площадь теплоотдачи, м2; t – температура источника, °С; tB, – температура окружающего воздуха, °С. Источником теплового излучения в производственных условиях является расплавленный или нагретый металл, открытое пламя, нагретые поверхности оборудования. Количество тепла, переданного посредством излучения (Qи, Дж) от более нагретого твердого тела с температурой T1К к менее нагретому телу с температурой T2К, определяется по уравнению: где S – поверхность излучения, м2; τ – время, с; C1-2 – коэффициент взаимного излучения, Θ – средний угловой коэффициент, определяемый формой и размерами участвующих в теплообмене поверхностей, их взаимным расположением в пространстве и расстоянием между ними. Человек в процессе труда постоянно находится в состоянии теплового взаимодействия с окружающей средой. Для нормального протекания физиологических процессов в организме человека требуется поддержание практически постоянной температуры его внутренних органов (приблизительно 36,6°С). Способность человеческого организма к поддержанию постоянной температуры носит название терморегуляции. Терморегуляция достигается отводом выделяемого организмом тепла в процессе жизнедеятельности в окружающее пространство. Величина тепловыделения организмом человека зависит от степени его физического напряжения и параметров микроклимата в производственном помещении и составляет в состоянии покоя 85 Вт, возрастая до 500 Вт при тяжелой физической работе. Теплоотдача от организма человека в окружающую среду происходит следующими путями: в результате теплопроводности через одежду (Qt); конвекции тела (QК) излучения на окружающие поверхности (QИ), испарения влаги с поверхности кожи (Qисп), а также за счет нагрева выдыхаемого воздуха (QB), т. е.: Qобщ = QT + QK + QИ + Qисп + QВ. Представленное уравнение носит название уравнения теплового баланса. Вклад перечисленных выше путей передачи тепла непостоянен и зависит от параметров микроклимата в производственном помещении, а также от температуры окружающих человека поверхностей (стен, потолка, оборудования и др.). Если температура этих поверхностей ниже температуры человеческого тела, то теплообмен излучением идет от организма человека к холодным поверхностям. В противном случае теплообмен осуществляется в обратном направлении – от нагретых поверхностей к человеку. Теплоотдача конвекцией зависит от температуры воздуха в помещении и скорости его движения на рабочем месте, а отдача теплоты путем испарения – от относительной влажности и скорости движения воздуха. Основную долю в процессе отвода тепла от организма человека (порядка 90% общего количества тепла) вносят излучение, конвекция и испарение. Нормальное тепловое самочувствие человека при выполнении им работы любой категории тяжести достигается при соблюдении теплового баланса, уравнение которого приведено выше. Рассмотрим, как влияют основные параметры микроклимата на теплоотдачу от организма человека в окружающую среду. Влияние температуры окружающего воздуха на человеческий организм связано в первую очередь с сужением или расширением кровеносных сосудов кожи. Под действием низких температур воздуха кровеносные сосуды кожи сужаются, в результате чего замедляется поток крови к поверхности тела и снижается теплоотдача от поверхности тела за счет конвекции и излучения. При высоких температурах окружающего воздуха наблюдается обратная картина: за счет расширения кровеносных сосудов кожи и увеличения притока крови существенно увеличивается теплоотдача в окружающую среду. Повышенная влажность (φ > 85%) затрудняет теплообмен между организмом человека и внешней средой вследствие уменьшения испарения влаги с поверхности кожи, а низкая влажность (φ < 20%) приводит к пересыханию слизистых оболочек дыхательных путей. Движение воздуха в производственном помещении улучшает теплообмен между телом человека и внешней средой, но излишняя скорость движения воздуха (сквозняки) повышает вероятность возникновения простудных заболеваний. Постоянное отклонение от нормальных параметров микроклимата приводит к перегреву или переохлаждению человеческого организма и связанным с ними негативным последствиям: при перегреве – к обильному потоотделению, учащению пульса и дыхания, резкой слабости, головокружению, появлению судорог, а в тяжелых случаях – возникновению теплового удара. При переохлаждении возникают простудные заболевания, хронические воспаления суставов, мышц и др. Для исключения перечисленных выше негативных последствий необходимо правильно выбирать параметры микроклимата в производственных помещениях. В отечественных нормативных документах введены понятия оптимальных и допустимых параметров микроклимата. Оптимальными микроклиматическими условиями являются такие сочетания количественных параметров микроклимата, которые при длительном и систематическом воздействии на человека обеспечивают сохранение нормального функционального и теплового состояния организма без напряжения механизмов терморегуляции. Они обеспечивают ощущение теплового комфорта и создают предпосылки для высокого уровня работоспособности. Допустимыми условиями являются такие сочетания количественных параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать преходящие и быстро нормализующиеся изменения функционального и теплового состояния организма, сопровождающиеся напряжением механизмов терморегуляции, не выходящим за пределы физиологических приспособительных возможностей. При этом не возникает повреждений или нарушений состояния здоровья, но могут наблюдаться ухудшение самочувствия и снижение работоспособности. В ГОСТе 12. 1.005-88 «Воздух рабочей зоны. Общие санитарно-гигиенические требования» представлены оптимальные и допустимые параметры микроклимата в производственном помещении в зависимости от тяжести выполняемых работ, количества избыточного тепла в помещении и сезона (времени года). В соответствии с этим ГОСТом различают холодный и переходный периоды года (со среднесуточной температурой наружного воздуха ниже +10°С), а также теплый период года (с температурой +10°С и выше). Все категории выполняемых работ подразделяются на: легкие (энергозатраты до 172Вт), средней тяжести (энергозатраты до 172–293 Вт) и тяжелые (энергозатраты более 293 Вт). По количеству избыточного тепла все производственные помещения делятся на помещения с незначительными избытками явной теплоты1 (QЯ Т 23,2Дж/мз•c) и помещения со значительным избытком явной теплоты (QЯ Т > 23,2Дж/мз•c). Производственные помещения с незначительными избытками явной теплоты относятся к «холодным цехам», а со значительными – к «горячим». 1 Явная теплота – это теплота, поступающая в производственное помещение от оборудования, отопительных приборов, солнечного нагрева, людей и других источников воздействия на температуру воздуха в этом помещении.
В качестве примера определим оптимальные и допустимые параметры микроклимата на постоянных рабочих местах исходя из следующих показателей: категория работ – тяжелая, период года – холодный, помещения – с незначительным избытком явной теплоты. По ГОСТу 12.1.005-88 находим следующие параметры микроклимата:
При постоянном тепловом облучении человеческого организма наступают нарушения в деятельности его основных систем и в первую очередь сердечно-сосудистой и нервной систем. Предельно допустимый уровень (нормируемое значение) интенсивности теплового излучения при облучении поверхности тела: 50% и более – 35,0 Вт/м2 От 25 до 50% - 70,0 Вт/м2 Не более 25% - 100 Вт/м2 Для поддержания нормальных параметров микроклимата в рабочей зоне применяют следующие основные мероприятия: механизацию и автоматизацию технологических процессов, защиту от источников теплового излучения, устройство систем вентиляции, кондиционирования воздуха и отопления. Кроме того, важное значение имеет правильная организация труда и отдыха работников, выполняющих трудоемкие работы или работы в горячих цехах. Для этих категорий работников устраивают специальные места отдыха в помещениях с нормальной температурой, оснащенных системой вентиляции и снабжения питьевой водой. Рассмотрим более подробно перечисленные мероприятия. Механизация и автоматизация производственного процесса позволяют либо резко снизить трудовую нагрузку на работающих (массу поднимаемого и перемещаемого вручную груза, расстояние перемещения груза, уменьшить переходы, обусловленные технологическим процессом, и др.), либо вовсе убрать человека из производственной среды, переложив его трудовые функции на автоматизированные машины и оборудование. Однако автоматизация технологических процессов требует значительных экономических затрат, что затрудняет внедрение указанных мероприятий в производственную практику. Для защиты от теплового излучения используют различные теплоизолирующие материалы, устраивают теплозащитные экраны и специальные системы вентиляции (воздушное душирование). Перечисленные выше средства защиты носят обобщающее понятие теплозащитных средств. Теплозащитные средства должны обеспечивать тепловую облученность на рабочих местах не более 350 Вт/м2 и температуру поверхности оборудования не выше 35°С при температуре внутри источника тепла до 100°С и не выше 45°С – при температуре внутри источника тепла выше 100°С. Основным показателем, характеризующим эффективность теплоизоляционных материалов, является низкий коэффициент теплопроводности1, который составляет для большинства из них 0,025-0,2 Вт/м·К. 1 Коэффициент теплопроводности или теплопроводность (λ) показывает, какое количество тепла проходит за счет теплопроводности в единицу времени через единичную площадь стенки при разности температур между поверхностями стенки один градус. В системе СИ размерность λ Вт/м·К.
Для теплоизоляции используют различные материалы, например, асбестовую ткань и картон, специальные бетон и кирпич, минеральную и шлаковую вату, стеклоткань, углеродный войлок и др. Так, в качестве теплоизоляционных материалов для трубопроводов пара и горячей воды, а также для трубопроводов холодоснабжения, используемых в промышленных холодильниках, могут быть использованы материалы из минеральной ваты. Теплозащитные экраны используют для локализации источников теплового излучения, снижения облученности на рабочих местах, а также для снижения температуры поверхностей, окружающих рабочее место. Часть теплового излучения экраны отражают, а часть поглощают. Для количественной характеристики защитного действия экрана используют следующие показатели: кратность ослабления теплового потока (т), а также эффективность действия экрана (ηэ). Эти характеристики выражаются следующими зависимостями: и где Е1 и Е2 – интенсивность теплового облучения на рабочем месте соответственно до и после установки экранов, Вт/м2. Таким образом, показатель т определяет, во сколько раз первоначальный тепловой поток на рабочем месте превышал тепловой поток на рабочем месте после установки экрана, а показатель ηэ – какая часть из первоначального теплового потока доходит до рабочего места, защищенного экраном. Эффективность ηэ для большинства экранов лежит в пределах 50–98,8%. Различают теплоотражающие, теплопоглощающие и теплоотводящие экраны. Теплоотражающие экраны изготавливаются из алюминия или стали, а также фольги или сетки на их основе. Теплопоглощающие экраны представляют собой конструкции из огнеупорного кирпича (типа шамота), асбестового картона или стекла (прозрачные экраны). Теплоотводящие экраны – это полые конструкции, охлаждаемые изнутри водой. Своеобразным теплоотводящим прозрачным экраном служит так называемая водяная завеса, которую устраивают у технологических отверстий промышленных печей и через которую вводят внутрь печей инструменты, обрабатываемые материалы, заготовки и др.
|