КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Зависимость проницаемости от пористости
Теоретически доказано, что для хорошо отсортированного, окатанного, однородного материала (например, кварцевый мономиктовый песок, представленный на 90 % одним минералом) проницаемость не зависит от пористости. Для реальных коллекторов в общем случае более пористые породы являются и более проницаемыми. Зависимость проницаемости от размера пор для фильтрации через капиллярные поры идеальной пористой среды можно оценить из соотношений законов Пуазейля и Дарси. Уравнение Пуазейля описывает объёмную скорость течения жидкости через пористую среду, которая представляется в виде системы прямых трубок одинакового сечения длиной (L), равной длине пористой среды:
, (1.25) где r – радиус порового канала; L – длина порового канала; n – число пор, приходящихся на единицу площади фильтрации; F – площадь фильтрации; m – вязкость жидкости; DР – перепад давления. Коэффициент пористости среды, через которую проходит фильтрация, можно представить следующим образом:
. (1.26) С учетом 1.26, уравнение 1.25 можно переписать следующим образом: , (1.27)
и сравнить его с уравнением Дарси ( ). Приравняв правые части уравнений, после сокращения подобных членов получим выражение для взаимосвязи проницаемости, пористости и радиуса порового канала: . (1.28)
Выражение 1.28 используется при проведении прогнозных и модельных расчетах коэффициента проницаемости для образцов кернового материала с известной пористостью. Измерения показали, что радиусы пор, по которым в основном происходит движение жидкостей, находится в пределах от 5 до 30 мкм. Из уравнения 1.28 следует, что радиус (размер) порового канала можно оценить: . (1.29)
Если выразить проницаемость в мкм2, то радиус поровых каналов (в мкм) будет рассчитываться по выражению:
. (1.30)
Уравнения 1.28-1.30 характеризуют взаимосвязь между пористостью, проницаемостью и радиусом порового канала и справедливы только для идеальной пористой среды, например, для кварцевого песка. Для реальных коллекторов оценка радиуса порового канала производится с учётом структурных особенностей порового пространства пород. Обобщенным выражением для этих целей является эмпирическое уравнение Ф.И. Котяхова: , (1.31)
где r – радиус пор; j – структурный коэффициент, учитывающий извилистость порового пространства. Значение j оценивают для модельных сред путём измерения электрического сопротивления пород. Для керамических, пористых сред при изменении пористости от 0,39 до 0,28, по экспериментальным данным, j изменяется от 1,7 до 2,6. Структурный коэффициент для зернистых пород можно приблизительно оценить по эмпирической формуле:
. (1.32)
Для оценки взаимосвязи коэффициента проницаемости от радиуса порового каналапри фильтрации жидкости только через каналы, капилляры (поры круглого сечения) используются соотношения уравнений Пуазейля и Дарси:
и . (1.33)
Причем, пористая среда представляет собой систему трубок. Общая площадь пор, через которые идет фильтрация флюидов, оценивается как: F = π·r2. Величину π можно представить как → π = F/r2. Подставив эту величину в уравнение Пуазейля (1.33, левое выражение) и сократив одинаковые параметры в выражениях (1.33, левом и правом) получим корреляционную взаимосвязь между коэффициентом проницаемости породы от радиуса порового канала: .(1.34)
Если r измеряется в [см], а коэффициент проницаемости в [Д] (1Д ≈ 1,02·10–8 см2 или =1,01327), то вводится соответствующий коэффициент пересчета 9,869·10–9. Тогда, коэффициент проницаемости при фильтрации жидкости через капилляр оценивается эмпирическим выражением:
kпр =r2/(8·9,869·10–9) = 12,5 · 106 ×r2.(1.35)
Оценка взаимосвязи коэффициента проницаемости от высоты поровой трещиныпри фильтрации жидкости только через трещиноватые поры оценивается из соотношений уравнений Букингема и Дарси. Потеря давления при течении жидкости через щель очень малой высоты оцениваются уравнением Букингема:
, (1.36)
где h – высота трещины; v – линейная скорость фильтрации жидкости. Выразив из уравнения Дарси величину перепада давления (∆P = v·μ·L/kпр.), приравняв правые части с 1.36 и сократив одинаковые параметры получим выражение: . (1.37) С учетом того, что h измеряется в [см], а коэффициент проницаемости в [Д], вводится соответствующий коэффициент пересчета = 9,869·10–9. Тогда, коэффициент проницаемости при фильтрации жидкости через трещину оценивается:
kпр =h2/(12 · 9,869·10 –9) = 84,4 · 105·h2.(1.38)
Уравнения 1.35 и 1.38 используется для теоретической оценки коэффициентов проницаемости для конкретного вида пор. Рассмотрим пример.Через кубик породы размером 10·10·10 см, с проницаемостью 10 мД фильтруется жидкость при линейной режиме вязкостью 1 спз, при градиенте давления (∆Р/∆L), равном 0,25 атм/м (0,0025 атм/см). Определить дебит? Решение. Рассмотренный случай – субкапиллярной фильтрации, то есть фильтрация равномерная и проходит через всю площадь образца, имеющего субкапиллярную пористость. Дебит (Q1)составит: = 100 · 0,01 · (0,0025 /1) = 0,0025 см3/сек. Если в этом кубике будет один канал диаметром 0,2 мм той же длины, что и кубик, то при том же градиенте давления дебит фильтрующейся жидкости через этот канал будет: = 12,5 · 106· (0,02 /2)2 · π · (0,02 /2)2 · 0,00025 = 0, 001 см3 /сек Следовательно, при наличии в кубике одного канала и субкапиллярной пористости, т. е. при наличии неравномерной фильтрации суммарный дебит (Q3) фильтрующейся жидкости составит: Q3 = Q2 + Q1 = 0,001 + 0,0025 = 0,0035 (см3/сек). Суммарный дебит (Q3) имеет величину на 40 % больше чем при субкапиллярной фильтрации (Q1). Если в кубике вместо канала имеется трещина высотой 0,2 мм и шириной 10 см, ее влияние на общий дебит жидкости, фильтрующийся через породу, будет существенным: = (84,4 ·105 · (0,02)2 · 0,02 · 10 · 0,0025) / 1 = 1,688 см3/сек. А суммарный дебит (Q5) с учетом субкапиллярной фильтрации (Q1) составит: Q5 = Q4 + Q1 = 1,688 + 0,0025 = 1,6905 (см3/с). По сравнению с первым случаем дебит увеличится в 675 раз.
Пример свидетельствует о большом влиянии наличия каналов и особенно трещин в породе на объём фильтрующейся жидкости. На практике проницаемость породы определяют в лабораторных условиях по керновому материалу (см. лабораторный практикум).
|