КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Соединение потребителя треугольникомПотребители соединяются треугольником, если их рабочее напряжение равно линейному напряжению. Существуют два вида изображений на схемах: потребители расположены под углом 120˚ или параллельно друг другу. При соединении в треугольник линейные напряжения равны фазному напряжению Uл = Uф. Токи в фазах: I12 = U12/R12, I23 = U23/R23, I31 = U31/R31. Векторные диаграммы при соединении треугольником можно тоже рисовать по-разному. Можно рисовать векторы, исходящими из одной начальной точки, а можно векторы напряжений изобразить треугольником (рис.130). При симметричной нагрузке векторы фазовых токов равны, и векторная диаграмма симметрична. Если нагрузка не симметрична, то этого не будет. Пример. В трёхфазной сети с напряжением 400В объединены в треугольник потребители с разным сопротивлением нагрузки. Найдём фазовые и линейные токи в этой цепи. Фазовые токи: I12 = U12/R12 = 4A; I23 = U23/R23 = 8A; I31 = U31/R31 = 2A. Линейные токи можно найти из векторной диаграммы, учитывая следующие соотношения: I1 + I31 = I12, I2 + I12 = I23, I3 + I23 = I31. Здесь в масштабе построены вычисленные фазовые токи и геометрическим сложением определены линейные токи.
Особый случай несимметричной нагрузки получается при обрыве одного из проводов. Посмотрим, что получится при обрыве L1.
R23 будет работать в нормальном режиме: I23 = U23/R23. Потребители R12 и R31 будут подсоединены неправильно и их ток: I12 = I31 = U23/(R12 + R31). Линейный ток I2 будет равен геометрической сумме токов I23 и I12.
Цепь называют нелинейной, если хотя бы один из её элементов обладает нелинейной характеристикой. Активные нелинейные сопротивления характеризуются вольтамперной характеристикой (рис. 4.1). Характеристики элементов могут быть симметричными и несимметричными. Они располагаются в первом и в третьем квадрантах. У нелинейных элементов их сопротивление зависит от напряжения r(u) или от тока, r(i). Примером активного нелинейного сопротивления является полупроводниковый диод. Его вольтамперная характеристика (ВАХ) несимметрична (рис. 4.2) и содержит рабочие (сплошная линия) и нерабочие зоны (штриховая линия). На электрических схемах диод изображается, как показано на рис. 4.3. Он относится к неуправляемым элементам. Примером управляемого активного нелинейного сопротивления является транзистор (рис. 4.4). Током базы (Б) изменяют сопротивление между эмиттером (Э) и коллектором (К). Другим примером управляемого активного нелинейного сопротивления является тиристор (рис. 4.5). В нем с помощью управляющего электрода (УЭ) можно только уменьшить сопротивление между анодом и катодом Rak, а увеличить его нельзя. Это не полностью управляемое активное сопротивление. Существуют и запираемые тиристоры (рис. 4.6). Запираемый тиристор (может увеличивать и уменьшать Rak).
Нелинейные индуктивные элементы характеризуются вебер-амперной характеристикой (рис. 4.7). Потокосцепление связано с током следующей зависимостью: y = Li. Эта формула и определяет вебер-амперную характеристику (ВбАХ). Если индуктивность L = сonst, то характеристика – прямая (рис. 4.7, а, сплошная линия), но если в ее основе есть ферромагнетик, то это неуправляемая нелинейная индуктивность (рис. 4.7, б). С помощью нелинейных элементов в электрических цепях осуществляется ряд преобразований электромагнитной энергии. Основные из них: выпрямление переменного напряжения или тока; инвертирование постоянного напряжения или тока; усиление напряжений и токов; регулирование постоянных и переменных напряжений и токов; стабилизация напряжений и токов; преобразование частоты; модуляции и так далее. 50) Соотношение между фазными и линейными напряжениями и токами
|