Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Перспективы развития энергетики




Возможность энергетики народного хозяйства упорно возрастает. Она возникает вследствие концентрации мощностей в линиях электропередачи и на электростанциях, централизации электроснабжения, экономному и комплексному применению энергетических ресурсов, использованию, а также разработке новейших источников энергии.

Вопреки опережающему развитию энергетики формируется неплохое основание в прогрессе во всех сферах промышленности, транспорта, строительства, сельского хозяйства, и конечно же в области роста культурного уровня и достатка людей. Однако, растущая потребность в разных видах энергии призывает к реализации немалых мероприятий по увеличению эффективности работы энергетических установок и предприятий, а также поиску путей применения и образования новых источников энергии.

Главы государств выказывают немалую заботу о своевременном вводе в действие больших энергетических объектов, более результативного использования наличествующих электростанций, ускорении сооружения линий электропередачи, а также бесперебойном обеспечении энергией населения страны и народного хозяйства. Для более рационального применения энергетических ресурсов понижают долю нефти как топлива, заменяя её углём и газом, невероятно стремительно развивается атомная энергетика, идёт поиск принципиально новейших источников энергии.

В настоящее время в нашей стране и странах ближнего зарубежья достигли высокого уровня развития все сферы энергетики – ветроэнергетика, электроэнергетика, гидроэнергетика, теплоэнергетика, ядерная и атомная энергетика. Техники, инженеры, ученые, а также передовые рабочие ведут разработки и изучения новейших методов приобретения и применения энергии. На основе открытий в области ядерной физики родилась атомная энергетика. Появление новейшей, перспективной области народного хозяйства – ядерной энергетики – было ознаменовано в 1951 г. 27 июня запуском первой в мире атомной электростанции мощностью 5 тыс. кВт, возведенной в Обнинске. За истечением времени в разных странах было включено в действие более ста атомных электростанций совместной мощностью около 40 млн. кВт. Также начали действовать среди них Кольская и Ленинградская атомные электростанции, и другие. Затем велась постройка ещё ряда атомных электростанций.

Благодаря использованию атомной энергии, по мнению ведущих специалистов, в перспективе будет работать половина всех электростанций. К формированию новых типов реакторов на быстрых нейтронах привело развитие техники применения ядерного деления. В этих реакторах кроме производства электроэнергии, также исполняется воспроизводство ядерного горючего. Атомные электростанции делает более экономичными строительство реакторов на быстрых нейтронах. Ученых навели изучения свойств атомных ядер на открытие технологии приобретения ядерной энергии, в образе которого присутствует синтез лёгких элементов.

К примеру, в слиянии ядер изотопов водорода (трития и дейтерия) создастся ядро атома гелия и от этого выдается колоссальная энергия. Тем не менее, определенные трудности лежат на пути промышленного применения энергии ядерного синтеза: надобна высокая температура (до 100 млн. °С); необходимость реализовать управление процессом ядерного синтеза. Ученые разных стран занимаются этими проблемами.

Ещё одно улучшение процесса производства на тепловых электростанциях электроэнергии определяется внесением бинарных энергетических агрегатов. К примеру, теплота, выделяющаяся на момент сгорания топлива, в ртутно-водяных энергетических установках подаётся парам ртути, которые в свою очередь делают полезно-необходимую работу в ртутной турбине. Далее пары ртути определяются в конденсатор-испаритель и оставшуюся всю энергию дают пару, проводящему работу в пароводяной турбине.

Наша страна достигла гигантских успехов в развитии гидроэнергетики. Следующие улучшения гидроэнергетической техники сориентировано на разработку конструкций так сказать ещё более мощных гидротурбин, а также увеличение их полезного действия, целесообразное применение энергии воды и конечно уменьшение затрат на постройки гидротехнических сооружений.

Немалая внимательность отводится комплексному применению гидроэнергетических ресурсов с итогом получения электроэнергии, исполнения работ по ирригации земель, в создании условий эффективности рыбоводства, с его увеличением, с обязательным использованием мер в охране окружающей среды.

Перспективна и работа над новыми гидроресурсами – энергии отливов и приливов. В ходе преобразования теплоты в механическую энергию, а после механической энергии в электрическую проходят немалые потери энергии. Вследствие чего более экономный перспективный путь получение электрической энергии производится путем прямого преобразования теплоты в электрическую энергию. Это воплощается в действительность в магнито-гидродинамических генераторах, термоэлектронных и термоэлектрических элементах. На момент высоких температур совершается ионизация газов, кое-какие газы в это время превращаются в плазму. Если же пропустить плазму при большой скорости в тесно-ограниченном канале внутри полюсов магнита, то на стенках противоположных каналу появится электрическое напряжение. Этим самым, получается магнито-гидродинамический генератор. Производятся мощные такие генераторы, но время их промышленного применения стоит рад решений проблем в создании не дорогих материалов, и выдачи сильных магнитных полей. Так же прогрессивны методы получения электроэнергии за счёт прямого преобразования энергии химических связей. Аккумуляторы и гальванические элементы, где осуществляется такое преобразование, используют давно. Тем не менее, их не применяют с целью энергетических установок, оттого, что они не обеспечивают необходимое непрерывное получение электроэнергии и располагают слишком ограниченным запасом хим-горючего. В этом отношении более прогрессивными являются топливные элементы как значимые части электрохимических генераторов.

Электрическая энергия в топливном элементе образуется за счёт окислителя в присутствии катализатора и окислительно-восстановительной реакции топлива. К примеру, в качестве катализатора может быть серебро, платина, в качестве окислителя кислород, в качестве топлива водород; тогда выходит кислородно-водородный топливный элемент. Резерв химического горючего в кислородно-водородных топливных элементах постоянно пополняется: металлические пластины помещены в растворе электролита, пропускающие в свою очередь водород и кислород; реакция соединения водорода с кислородом происходит в этом растворе, впоследствии чего на пластинах появляется электрическое напряжение.

Ученые продолжают работать над дальнейшим совершенствованием: сменой водорода природным газом, увеличением мощности элементов. Применение полупроводниковых материалов в термоэлектрической технологии получения электроэнергии является перспективным в энергетических целях, преобразование солнечной энергии в электроэнергию. Поиск новых источников энергии продолжают осуществлять инженеры и ученые, более предоставляющих и эффективных методов её получения, употребления и передачи.

 


Поделиться:

Дата добавления: 2015-01-19; просмотров: 182; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты